Перечень таблиц стандартных справочных данных ССД (реестр таблиц с текстами находится в разделе «Информация и данные ГСССД» https://fgis.gost.ru/fundmetrology/registry/10)

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во
1	2	3	4	<u>стр.</u> 5
1.	ГСССД 1 – 87 заменены на ГСССД 198 – 01	Депонировано в ГНМЦ «ССД» 18.12.2001, №798-01кк	Фундаментальные физические константы	20
2.	ГСССД 2 – 77	М.: Издательство стандартов, 1978	Вода. Плотность при атмосферном давлении и температурах от 0 до 100град	6
3.	ГСССД 3 — 77	М.: Издательство стандартов, 1978	Ртуть. Плотность ртути и коэффициент термического расширения при атмосферном давлении и температурах от 0 до 350° С	6
4.	ГСССД 4 – 78	М.: Издательство стандартов, 1978	Плотность, энтальпия, энтропия и изобарная теплоемкость жидкого и газообразного азота при температурах 70-1500К и давлениях 0,1-100 МПа	12
5.	ГСССД 5 – 78 заменен на ГСССД 10 – 80 (б/н)	М.: Издательство стандартов, 1979	Геометрическая конфигурация ядер и межъядерные расстояния молекул и ионов в газовой фазе. Трехатомные молекулы и ионы в основном и возбужденных электронных состояниях	174
6.	ГСССД 6 – 89	М.: Издательство стандартов, 1989	Вода. Коэффициент динамической вязкости при температурах 0-800град, и давлениях от соответствующих разреженному газу до 300 МПа	18
7.	ГСССД 7 – 79	М.: Издательство стандартов, 1979	Техническое железо с содержанием основного компонента не менее 99,84%. Теплопроводность и ее температурный коэффициент при температурах от 0° до 270° С	2

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
8.	ГСССД 8 – 79	М.: Издательство	Плотность, энтальпия, энтропия и изобарная теплоемкость	12
		стандартов, 1980	жидкого и газообразного воздуха при температурах 70-1500	
			К и давлениях 0,1-100 МПа	
9.	ГСССД 9 – 79	М.: Издательство	Сталь инструментальная быстрорежущая. Механические	8
		стандартов, 1980	свойства в состоянии поставки и в термически	
			обработанном состоянии	
10.	ГСССД 10 – 80 (б/н)	М.: Издательство	Геометрическая конфигурация ядер и межъядерные	74
	(взамен ГСССД 5 – 78)	стандартов, 1980	расстояния молекул и ионов в газовой фазе. Трехатомные	
			молекулы и ионы в основном и возбужденных электронных	
			состояниях	
11.	ГСССД 11 – 80	М.: Издательство	Чугун. Упругие свойства Модуль Юнга при температурах	1
		стандартов, 1980	20°-700° C	
12.	ГСССД 12 – 80	М.: Издательство	Электронные переходы в двухатомных молекулах. Силы	61
		стандартов, 1980	электронных переходов, силы осцилляторов и времена	
			жизни возбужденных состояний	
13.	ГСССД 13 – 80	М.: Издательство	Эффективные сечения ионизации щелочных металлов	9
		стандартов, 1982		
14.	ГСССД 14 – 80	М.: Издательство	Энергии гамма-квантов, испускаемых нуклидами,	5
		стандартов, 1982	входящими в состав образцовых спектрометрических	
			гамма-источников	
15.	ГСССД 15 – 81 (б/н)	М.: Издательство	Геометрическая конфигурация ядер и межъядерные	43
		стандартов, 1981	расстояния молекул и ионов в газовой фазе.	
			Четырехатомные молекулы и ионы неорганических	
			соединений	

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
16.	ГСССД 16 – 81	Депонировано	Вода. Удельный объем и энтальпия при температурах	39
	заменены на ГСССД	в ГНМЦ «ССД»	0°1000° С и давлениях 0,0011000 МПа	
	187 – 99, см. также СТД	28.12.1999г.		
	98 - 2000	№779-99кк		
17.	ГСССД 17 – 81	М.: Издательство	Гелий, неон, аргон, криптон, ксенон. Динамическая	19
	заменены на ГСССД	стандартов, 1992	вязкость и теплопроводность при атмосферном	
	138 – 89		давлении(0,101325 МПа) в диапазоне температур от	
			нормальных точек кипения до 5000 К	
18.	ГСССД 18 – 81	Депонировано	Метан жидкий и газообразный. Термодинамические	43
	заменены на ГСССД	в ГНМЦ «ССД»	свойства, коэффициенты динамической вязкости и	
	195 - 2001	18.12.2001г.,	теплопроводности при температурах 91700 К и давлениях	
		№795-01кк	0,1100 MΠa	
19.	ГСССД 19 – 81	М.: Издательство	Кислород жидкий и газообразный. Плотность, энтальпия,	8
		стандартов, 1982	энтропия и изобарная теплоемкость при температурах 70-	
			1000 К и давлениях 0,1-100 МПа	
20.	ГСССД 20 – 81	М.: Издательство	Бензойная кислота. Изобарная теплоемкость в диапазоне	4
		стандартов, 1982	температур 4-273,15 К	
21.	ГСССД 21 – 81	М.: Издательство	Медь. Изобарная теплоемкость в диапазоне температур 4-	4
		стандартов, 1982	273,15 K	
22.	ГСССД 22 – 81	М.: Издательство	Растворы KCl в воде. Удельная электрическая	5
		стандартов, 1984	проводимость	
23.	ГСССД 23 – 81	М.: Издательство	Хлорбензол, ацетон, вода. Диэлектрическая проницаемость	5
		стандартов, 1982	и диэлектрические потери при 3-30 ГГц (293 К) и при 288-	
			363 К (9,196 ГГц)	

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
24.	ГСССД 24 – 81	М.: Издательство	Пентан, гексан, бензол, сероуглерод, четыреххлористый	11
		стандартов, 1982	углерод, циклогексан. Диэлектрическая проницаемость и ее	
			температурный коэффициент в диапазоне частот от 0,1 до	
			10 ¹¹ Гц при температурах от 273 до 333 К	
25.	ГСССД 25 – 81	М.: Издательство	Графит квазимонокристаллический УПВ-1Т. Изобарная	12
	заменены на ГСССД	стандартов, 1991	теплоемкость, энтальпия и энтропия в диапазоне	
	25 - 90		температур 298,154000 К	
26.	ГСССД 26 – 81	М.: Издательство	Оптические кварцевые стекла. Оптические константы и	19
		стандартов, 1982	радиационные характеристики при температурах 295, 473,	
			673, 873, 1073, 1273, 1473 K	
27.	ГСССД 27 – 81	М.: Издательство	Сталь инструментальная быстрорежущая. Физические	9
		стандартов, 1982	свойства	
28.	ГСССД 28 – 82 (б/н)	М.: Издательство	Геометрическая конфигурация ядер и межъядерные	35
		стандартов, 1982	расстояния молекул и ионов в газовой фазе. Пятиатомные	
			неорганические молекулы	
29.	ГСССД 29 – 82 (б/н)	М.: Издательство	Геометрическая конфигурация ядер и межъядерные	32
		стандартов, 1982	расстояния молекул и ионов в газовой фазе. Шестиатомные	
			неорганические молекулы	
30.	ГСССД 30 – 82 (б/н)	М.: Издательство	Коэффициенты подгруппы точечных групп кристаллов	310
		стандартов, 1982		
31.	ГСССД 31 – 82	М.: Издательство	Железо карбонадное радиотехническое. Электромагнитные	6
		стандартов, 1983	параметры	
32.	ГСССД 32 — 82	М.: Издательство	Стали 12Х18Н9Т и 12Х18Н10Т. Удельная энтальпия и	6
		стандартов, 1983	удельная теплоемкость в диапазоне температур 400-1380 К	
			при атмосферном давлении	

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
33.	ГСССД 33 — 82	М.: Издательство стандартов, 1983	Кварцевое стекло КУ, КВ, КИ; оптическая керамика КО-1; фториды кальция, магния, бария; хлориды калия и натрия; окись алюминия. Диэлектрическая проницаемость при температуре 293 К в частотном диапазоне от 10 ⁻¹ до 10 ¹¹ Гц. Температурный коэффициент диэлектрической проницаемости	3
34.	ГСССД 34 – 82	М.: Издательство стандартов, 1983	Гелий, аргон, азот, двуокись углерода. Диэлектрическая проницаемость и поляризация при температурах 298, 323, 348 К и давлениях 0,1-10 МПа. Первый и второй диэлектрические вириальные коэффициенты, поляризуемость	8
35.	ГСССД 35 – 82	М.: Издательство стандартов, 1983	Алмаз природный. Теплопроводность при температурах от 320 до 450 K	4
36.	ГСССД 36 – 82	М.: Издательство стандартов, 1983	Алмаз природный. Светопропускание в диапазоне длин волн 0,2-25 мкм	5
37.	ГСССД 37 – 82	М.: Издательство стандартов, 1983	Алмаз природный и синтетический. Вязкость разрушения	3
38.	ГСССД 38 – 82	М.: Издательство стандартов, 1983	Пропан. Изохорная теплоемкость в области двухфазного состояния в диапазоне температур 90-350 К	5
39.	ГСССД 39 – 82	М.: Издательство стандартов, 1983	Молибден. Теплопроводность в диапазоне температур 200-2600 К	8
40.	ГСССД 40 – 82	М.: Издательство стандартов, 1983	Оптические кварцевые стекла. Оптические константы и радиационные характеристики при температурах 295, 473, 673, 873, 1073, 1273, 1473 К	32
41.	ГСССД 41 – 82	М.: Издательство стандартов, 1983	Сталь инструментальная быстрорежущая. Технологические свойства в состоянии поставки и в термическом состоянии	6

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
42.	ГСССД 42 — 82	М.: Издательство стандартов, 1983	Хризолит-асбест нормальный. Физико-химические свойства	6
43.	ГСССД 43 — 83 (б/н)	М.: Издательство стандартов, 1983	Геометрическая конфигурация ядер и межъядерные расстояния молекул и ионов в газовой фазе. Семи- и восьмиатомные неорганические молекулы	30
44.	ГСССД 44 – 83 (б/н)	М.: Издательство стандартов, 1984	Геометрическая конфигурация ядер и межъядерные расстояния молекул и ионов в газовой фазе. Неорганические молекулы с числом атомов более восьми	40
45.	ГСССД 45 – 83	М.: Издательство стандартов, 1984	Платина, кварцевое стекло КВ и КУ-2, медь. Температурный коэффициент линейного расширения	8
46.	ГСССД 46 – 83	М.: Издательство стандартов, 1984	Додекан, нафталилин, адамантан, бензойная кислота. Энтальпия образования в стандартном состоянии, энтальпия парообразования, энтальпия образования в газообразном состоянии	8
47.	ГСССД 47 – 83	М.: Издательство стандартов, 1984	Этилен жидкий газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 130-450 К и давлениях 0,1-100 МПа	12
48.	ГСССД 48 — 83 заменены на 196 — 2001	Депонировано в ГНМЦ «ССД» 18.12.2001г., №796-01кк	Этан жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах 91625 К и давлениях 0,1-70 МПа	49
49.	ГСССД 49 – 83	М.: Издательство стандартов, 1984	Азот. Второй вириальный коэффициент, коэффициенты динамической вязкости, теплопроводности, самодиффузии и число Прандтля разреженного газа в диапазоне температур 65-2500 К	30
50.	ГСССД 50 – 83	М.: Издательство стандартов, 1984	Бензойная кислота. Энергия сгорания	6

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во
1	2	3	4	стр. 5
51.	ГСССД 51 – 83	М.: Издательство стандартов, 1984	Парафторбензойная кислота. Энергия сгорания	4
52.	ГСССД 52 – 83	М.: Издательство стандартов, 1984	Парахлорбензойная кислота. Энергия сгорания	5
53.	ГСССД 53 – 83	М.: Издательство стандартов, 1984	Янтарная кислота. Энергия сгорания	7
54.	ГСССД 54 – 83	М.: Издательство стандартов, 1984	Гиппуровая кислота. Энергия сгорания	3
55.	ГСССД 55 – 83	М.: Издательство стандартов, 1984	Стали для валков горячей и холодной прокатки. Механические и теплофизические характеристики	12
56.	ГСССД 56 – 83	М.: Издательство стандартов, 1984	Медь особо чистая ОСЧ 11-4. Температурный коэффициент линейного расширения в диапазоне температур 4-90 К	4
57.	ГСССД 57 – 83	М.: Издательство стандартов, 1985	Ртуть. Коэффициенты вязкости, теплопроводности, самодиффузии и второй вириальный коэффициент в диапазоне температур 400-2000 К при низких давлениях в газообразном состоянии	12
58.	ГСССД 58 – 83	М.: Издательство стандартов, 1984	Строительные стали 12ГН2МФАЮ. Сталь 20, Вст. 3. Модуль нормальной упругости при температурах от –70° до 700° С	3
59.	ГСССД 59 – 83	М.: Издательство стандартов, 1984	Молибден, монокристаллическая окись алюминия, сталь 12x18H10T. Температурный коэффициент линейного расширения	6

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
60.	ГСССД 60 – 83	М.: Издательство стандартов, 1985	Оптические кварцевые стекла. Оптические константы и радиационные характеристики при температурах 295, 473, 673, 873, 1073, 1273, 1473К. 3. Стекло КУ-1. Оптические константы и радиационные характеристики в диапазонах 1,23-1,5 и 1,8-3,6 мкм. Интегральные радиационные характеристики	62
61.	ГСССД 61 – 83	М.: Издательство стандартов, 1985	Оптические кварцевые стекла. Оптические константы и радиационные характеристики при температурах 295, 473, 673, 873, 1073, 1273, 1473К. 4. Стекло КВ. Оптические константы и радиационные характеристики в диапазонах 1,23-1,5 и 1,8-3,6 мкм. Интегральные радиационные характеристики	49
62.	ГСССД 62 – 83	М.: Издательство стандартов, 1985	Платина. Изобарная теплоемкость в диапазоне температур 80-1000 К	2
63.	ГСССД 63 – 84	М.: Издательство стандартов, 1985	Эффективные сечения ионизации щелочноземельных металлов Ca, Sr, Ba	8
64.	ГСССД 64 – 84	М.: Издательство стандартов, 1985	Никель. Удельное сопротивление в диапазоне температур 200-1500 K	4
65.	ГСССД 65 – 84	М.: Издательство стандартов, 1985	Корунд синтетический. Изобарная теплоемкость в диапазоне температур 4-2300 К	4
66.	ГСССД 66 – 84	М.: Издательство стандартов, 1985	Кварц плавленный марки КВ. Коэффициент теплопроводности в диапазоне температур 80-500 К	13
67.	ГСССД 67 – 84	М.: Издательство стандартов, 1985	Сталь нержавеющая 12x18H10T. Коэффициент теплопроводности в диапазоне температур 4-300 К	4
68.	ГСССД 68 – 84	М.: Издательство стандартов, 1986	Спектр железа. Область 2320-3500 Анкстрем (Å)	43

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
69.	ГСССД 69 — 84	М.: Издательство	Древесина. Показатели физико-механических свойств	29
	TGGGT 5 0 04	стандартов, 1985	малых чистых образцов	
70.	ГСССД 70 – 84	М.: Издательство стандартов, 1985	Гелий-4 жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 2,5-450 К и давлениях 0,05-100 МПа	24
71.	ГСССД 71 – 84	М.: Издательство стандартов, 1985	Сплавы магнитотвердые литые ЮНДК15, ЮН14ДК24, ЮН14ДК25БА, ЮНДК34Т5, ЮНДК35Т5АА. Температуры начала и окончания плавления	7
72.	ГСССД 72 – 84	М.: Издательство стандартов, 1985	Сплавы магнитотвердые литые ЮНДК15, ЮН14ДК24, ЮН14ДК25БА, ЮНДК34Т5, ЮНДК35Т5АА. Температурный коэффициент линейного расширения	4
73.	ГСССД 73 — 84	М.: Издательство стандартов, 1984	Материалы магнитотвердые ЮНДК15, ЮН14ДК24, ЮН14ДК25БА, ЮНДК34Т5, ЮНДК35Т5АА, 16БА190, 22БА220, 28СА250. Кривые размагничивания, остаточная магнитная индукция, коэрцитивная сила по индукции, коэффициент магнитного возврата	11
74.	ГСССД 74 – 84	М.: Издательство стандартов, 1985	Конструкционные стали. Упругие свойства. Модуль нормальной упругости при температурах от -120° до 600° С	4
75.	ГСССД 75 – 84	М.: Издательство стандартов, 1984	Коррозионно-стойкие стали. Упругие свойства. Модуль нормальной упругости при температурах 20°-600° С	4
76.	ГСССД 76 – 84	М.: Издательство стандартов, 1986	Морская вода, Плотность в диапазонах температур -2°40° С, давлений 01000 Бар и соленостей 042	20
77.	ГСССД 77 – 84	М.: Издательство стандартов, 1985	Морская вода. Шкала практической солености 1978 г.	43
78.	ГСССД 78 – 84	М.: Издательство стандартов, 1985	Оксид иттрия Y_2O_3 . Энтальпия и изобарная теплоемкость в диапазоне температур 298,15-2500 К	6

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
79.	ГСССД 79 – 84	М.: Издательство стандартов, 1985	Вольфрам. Энтальпия и теплоемкость в диапазоне температур 1200-2800 К	5
80.	ГСССД 80 — 84	М.: Издательство стандартов, 1985	Водные растворы хлорида натрия. Изменения показателя преломления в диапазонах концентраций 0-45% и температур 20°-24° С на длине волны 0,632817 мкм	14
81.	ГСССД 81 – 84 заменены на 160 – 93	Депонировано в ГНМЦ «ССД» 06.06.1994г. №741-94кк	Газ природный расчетный. Плотность, фактор сжимаемости, энтальпия, энтропия, изобарная теплоемкость, скорость звука, показатель адиабаты и коэффициент линейного расширения при температурах 250450 К и давлениях 0,112 МПа	19
82.	ГСССД 82 – 84	М.: Издательство стандартов, 1985	Диоксид углерода-гелия. Термодинамические свойства газовых смесей при температурах 273-1073 К и давлениях 0,1-15 МПа	30
83.	ГСССД 83 – 85	М.: Издательство стандартов, 1987	Сталь инструментальная углеродистая и легированная. Механические свойства	11
84.	ГСССД 84 – 85	М.: Издательство стандартов, 1987	Сталь инструментальная углеродистая и легированная. Технологические свойства	6
85.	ГСССД 85 – 85	М.: Издательство стандартов, 1986	Сталь инструментальная углеродистая и легированная. Упругие свойства. Модуль нормальной упругости при температурах 20°600° С	4
86.	ГСССД 86 – 85	М.: Издательство стандартов, 1986	Молибден МЧ. Механические свойства при комнатной температуре	4
87.	ГСССД 87 – 85	М.: Издательство стандартов, 1986	Горные породы ряда разрабатываемых месторождений твердых полезных ископаемых СССР. Физические свойства	28
88.	ГСССД 88 – 85	М.: Издательство стандартов, 1986	Кварц плавленый КВ. Коэффициент теплопроводности в диапазоне температур 280 К	4

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
89.	ГСССД 89 – 85	М.: Издательство стандартов, 1986	Азот. Коэффициенты динамической вязкости и теплопроводности при температурах 651000 К и давлениях от состояния разряженного газа до 200 МПа	18
90.	ГСССД 90 – 85	М.: Издательство стандартов, 1986	Н-гексан. Термодинамические свойства при температурах 180630 К и давлениях 0,1100 МПа	62
91.	ГСССД 91 – 85 взамен Р 34 – 81	М.: Издательство стандартов, 1986	Аммиак жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах – 60°350° С и давлениях 0,0150 МПа	14
92.	ГСССД 92 – 86	М.: Издательство стандартов, 1986	Гелий-4. Коэффициенты динамической вязкости и теплопроводности при температурах 2,21000 К и давлениях от соответствующих разряженному газу до 100 МПа	12
93.	ГСССД 93 – 86	М.: Издательство стандартов, 1986	Кислород. Коэффициенты динамической вязкости и теплопроводности при температурах 70500 К и давлениях от соответствующих разряженному газу до 100 МПа	16
94.	ГСССД 94 – 86 заменены на 195 – 2001	Депонировано в ГНМЦ «ССД» 18.12.2001г., №795-01кк	Метан жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах 91700 К и давлениях 0,1100 МПа	43
95.	ГСССД 95 – 86	М.: Издательство стандартов, 1986	Криптон жидкий и газообразный. Плотность, энтальпия, энтропия, изобарная теплоемкость и скорость звука при температурах 1201300 К и давлениях 0,1100 МПа	23
96.	ГСССД 96 – 86	М.: Издательство стандартов, 1986	Диоксид углерода жидкий и газообразный. Плотность, фактор сжимаемости, энтальпия, энтропия, изобарная теплоемкость, скорость звука и коэффициент объемного расширения при температурах 2201300 К и давлениях 0,1100 МПа	25

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
97.	ГСССД 97 – 86	М.: Издательство стандартов, 1986	Диоксид углерода—азот. Термодинамические свойства газовых смесей при температурах 2731000 К и давлениях 0,115 МПа	25
98.	ГСССД 98 – 86 заменены на 187 – 99	Депонировано в ГНМЦ «ССД» 28.12.1999г. №779- 99кк	Вода. Удельный объем и энтальпия при температурах 0°1000° С и давлениях 0,0011000 МПа	39
99.	ГСССД 99 – 86	М.: Издательство стандартов, 1986	Тяжелая вода. Удельный объем и энтальпия при температурах 3,8°550° С и давлениях 0,001100 МПа	10
100.	ГСССД 100 – 86	М.: Издательство стандартов, 1986	Циклогексан. Термодинамические свойства при температурах 280680 К и давлениях 0,170 МПа	48
101.	ГСССД 101 – 86	М.: Издательство стандартов, 1986	Диоксид углерода. Коэффициенты вязкости, теплопроводности и число Прандтля разреженного газа в диапазоне температур 1502000 К	21
102.	ГСССД 102 – 86 (заменены на ГСССД 102 – 2005)	М.: Издательство стандартов, 1986 (ГСССД 102-2005 Депонировано в ГНМЦ «ССД» 08.12.2005, № 812-05 кк.)	Радионуклиды ⁵⁶ Co, ⁷⁵ Se, ^{110m} Ag, ¹³³ Ba, ¹⁵² Eu, ¹⁸² Ta, ¹⁹² Ir. Энергия, относительная и абсолютная интенсивности, гамма-излучения, период полураспада	10
103.	ГСССД 103 – 02	Депонировано в ГНМЦ «ССД» 14.05.2002 г., №799а-02кк	Радионуклиды ²²⁶ Ra, в равновесии с дочерними продуктами распада (²²² Rn, ²¹⁸ Po, ²¹⁸ At, ²¹⁴ Po), ²³³ U, ²³⁸ Pu, ²³⁹ Pu. Период полураспада, энергия и абсолютная вероятность эмиссии альфа-излучения	9

стр.
5
 Базисная 16
от 30 К до 10
иии
полезных 18
войства
ie 4
Zn, ¹⁰⁹ Cd, 12
ъ эмиссии
И
период
вязкости и 14
000 К и
азу до 100
азу до 100
й вязкости 15
1000 К и
азу до 100
шу до 100
емкость и 9
K
Давление 28
Ambitotitie 20
— БЫ НЕЙ ВЕНИ — БЫ БЕНИ — БЕ

No.	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
113.	ГСССД 113 – 87	М.: Издательство стандартов, 1988	Стали рессорно-пружинные. Упругие свойства. Модуль нормальной упругости при температурах –70°600° С	4
114.	ГСССД 114 – 87	М.: Издательство стандартов, 1988	Сталь инструментальная легированная. Механические свойства	9
115.	ГСССД 115 – 88	М.: Издательство стандартов, 1989	Углеводороды метанового ряда (CH_4 , C_2H_6 , C_3H_8 , C_4H_{10}). Поверхностное натяжение	8
116.	ГСССД 116 – 88	М.: Издательство стандартов, 1989	Коррозийно-стойкая сталь 0X13Г12С2Н2Д2Б (ДИ59). Условный предел длительной прочности при температурах 500°650° С	8
117.	ГСССД 117 – 88	М.: Издательство стандартов, 1989	Вода. Скорость звука при температурах 0°-100° С и давлениях 0,101325100 МПа	15
118.	ГСССД 118 – 88	М.: Издательство стандартов, 1989	Стали улучшаемые. Упругие свойства. Модуль нормальной упругости при температурах –80°500° С	4
119.	ГСССД 119 – 88	М.: Издательство стандартов, 1989	Фреон 12 (дифтордихлорметан). Коэффициенты теплопроводности, динамической вязкости и изохорная теплоемкость разряженного газа в диапазоне температур 243,15503,15 К	9
120.	ГСССД 120 — 2000 взамен ГСССД 120 — 88	Депонировано в ГНМЦ «ССД» 14.03.2000	Радионуклиды Na-22, Mn-54, Co-57, Co60, Zn-65, Se-75, Y-88, Cd-109, Sn-113, Ba-133, Cs-137, Ce-139, Eu-152, Th-228, Am-241. Период полураспада, энергия и абсолютная вероятность эмиссии гамма-излучения	12
121.	ГСССД 121 – 88	М.: Издательство стандартов, 1989	Ниобий. Физические свойства	5
122.	ГСССД 122 – 88	М.: Издательство стандартов, 1989	Осадочные горные породы (основные литологические разновидности) месторождений твердых полезных ископаемых на территории СССР. Физические свойства	28

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
123.	ГСССД 123-88 - см.	М.: Издательство	Йод. Коэффициенты динамической вязкости и	8
	ГСССД 127 – 89	стандартов, 1978	теплопроводности разряженного молекулярного газа в	
		_	диапазоне температур 4001000 К	
124.	ГСССД 124-88 - см.	М.: Издательство	Кварц плавленый марки КВ. Изобарная теплоемкость и	4
	ГСССД 128 – 88	стандартов, 1989	температуропроводность в диапазоне температур 4300 К	
125.	ГСССД 125 – 88	М.: Издательство	Воздух влажный. Теплофизические свойства в диапазоне	9
		стандартов, 1991	5°95° С при давлении 99325 Па	
126.	ГСССД 126 – 89	М.: Издательство	Толуол. Термодинамические свойства жидкой фазы в	5
		стандартов, 1989	состоянии насыщения в диапазоне температур 178520 К	
127.	ГСССД 127 – 89	М.: Издательство	Йод. Коэффициенты динамической вязкости и	8
		стандартов, 1989	теплопроводности разряженного молекулярного газа в	
			диапазоне температур 4001000 К	
128.	ГСССД 128 – 88	М.: Издательство	Кварц плавленый марки КВ. Изобарная теплоемкость и	4
		стандартов, 1989	температуропроводность в диапазоне температур 4300 К	
129.	ГСССД 129 – 89	М.: Издательство	Вата минеральная и изделия из нее. Теплопроводность,	6
		стандартов, 1990	температуропроводность, удельная теплоемкость,	
			звукопоглощение, динамический модуль упругости,	
			относительное сжатие	
130.	ГСССД 130 – 89	М.: Издательство	Спектральная плотность энергетической освещенности,	32
		стандартов, 1980	создаваемая звездами на границе атмосферы в диапазоне	
			длин волн 0,321,08 мкм	
131.	ГСССД 131 – 89	М.: Издательство	Нейтронно-активационные детекторы для реакторных	45
		стандартов, 1980	измерений. Сечения реакций взаимодействия нейтронов с	
			ядрами	
132.	ГСССД 132 – 88	М.: Издательство	Германий монокристаллический. Физические свойства	6
		стандартов, 1990		

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
133.	ГСССД 133 – 88	М.: Издательство стандартов, 1990	Сплавы системы марганец-медь. Демпфирующие и упругие свойства. Демпфирующая способность при циклических нагрузках до 30 МПа. Модуль нормальной упругости при температурах –80°80° С	5
134.	ГСССД 134 — 89	М.: Издательство стандартов, 1991	Растворы NaCl в воде. Удельный объем при температурах 273-873 К, давлениях 0,1-400,0 МПа, концентрациях 0,1-22 моль/кг в области жидкой фазы	31
135.	ГСССД 135 – 89	М.: Издательство стандартов, 1991	Растворы NaCl в воде	3
136.	ГСССД 136 – 89	М.: Издательство стандартов, 1991	Заменено на ГСССД 165 – 94	12
137.	ГСССД 137 — 89	М.: Издательство стандартов, 1990	Полиэтилен. Теплопроводность и температуропроводность в диапазоне температур 250410 К	11
138.	ГСССД 138 – 89 взамен ГСССД 17 – 81	М.: Издательство стандартов, 1992	Гелий, неон, аргон, криптон, ксенон. Динамическая вязкость и теплопроводность при атмосферном давлении (0,101325 МПа) в диапазоне температур от нормальных точек кипения до 5000 К	19
139.	ГСССД 139 – 89	М.: Издательство стандартов, 1990	Сплавы магнитотвердые литые ЮНДКТ5БА и ЮНДКТ8. Температуры начала и окончания плавления	7
140.	ГСССД 140 — 89	М.: Издательство стандартов, 1990	Сталь электротехническая холоднокатаная тонколистовая. Удельное электрическое сопротивление в диапазоне температур 20°200° С	3
141.	ГСССД 141 — 89	М.: Издательство стандартов, 1990	Сталь жаропрочная хромистая 10Х9МФБ (ДИ82-III). Условный предел длительной прочности в диапазоне температур 500°-610° С	12
142.	ГСССД 142 – 89	М.: Издательство стандартов, 1990	Вода. Поверхностное натяжение при температурах 0°379,99° С	4

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
143.	ГСССД 143 – 89	М.: Издательство стандартов, 1990	Этилен, пропилен. Изохорная теплоемкость в области двухфазного состояния	6
144.	ГСССД 144 — 89	М.: Издательство стандартов, 1990	Борсодержащие стали для холодной объемной штамповки 06ХГР, 12 Г1Р, 20Г2Р, 30Г1Р. Упругие свойства. Модуль нормальной упругости при температурах –80°300° С	5
145.	ГСССД 145 — 89	М.: Издательство стандартов, 1990	Деформируемые алюминиевые сплавы АМг6, Д16, В96Ц-1. Упругие свойства. Модуль нормальной упругости при температурах –80°300° С	3
146.	ГСССД 146 – 89	М.: Издательство стандартов, 1990	Сталь инструментальная легированная. Механические свойства	15
147.	ГСССД 147 – 90 заменены на 197 – 2001	Депонировано в ГНМЦ «ССД» 18.12.2001г., №795-01кк	Пропан жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах 86700 К и давлениях 0,1-100 МПа	50
148.	ГСССД 148 – 90	М.: Издательство стандартов, 1991	Графит квазимонокристаллический УПВ-1Т. Изобарная теплоемкость, энтальпия и энтропия в диапазоне температур 298,154000 К	12
149.	ГСССД 149 – 90	М.: Издательство стандартов, 1991	Олово и оловянно-свинцовые припои. Физические свойства	16
150.	ГСССД 150 – 90	М.: Издательство стандартов, 1991	Метаморфические горные породы месторождений полезных ископаемых на территории СССР. Физические свойства	13
151.	ГСССД 151 – 90	М.: Издательство стандартов, 1991	Чугуны СЧ20, ВЧ40 и ВЧ45 упругие свойства. Модуль нормальной упругости при температурах –80°500° С	3
152.	ГСССД 152 — 90	М.: Издательство стандартов, 1991	Низкоуглеродистые стали, цинк, медь, алюминий, магниевый сплав. Скорость коррозии в атмосферных условиях	8

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
153.	ГСССД 153 – 90	М.: Издательство стандартов, 1991	Цинковые и кадмиевые покрытия на стали. Скорость коррозии в атмосферных условиях	5
154.	ГСССД 154 – 91	М.: Издательство стандартов, 1991	Водные растворы хлоридов натрия и калия. Понижение температуры замерзания и эффективные (осмотические) концентрации	16
155.	ГСССД 155 – 91	М.: Издательство стандартов, 1993	Полипропилен. Теплопроводность и температуропроводность в диапазоне температур 280460 К	10
156.	ГСССД 156 – 91	М.: Издательство стандартов, 1993	Оксиды лантана, неодима и самария. Температура фазовых переходов при температурах выше 2000 К	12
157.	ГСССД 157 – 91	М.: Издательство стандартов, 1993	Дифторхлорметан (хладон R22). Коэффициент теплопроводности в диапазонах температур 173473 К и давлениях 0,15 МПа	12
158.	ГСССД 158 – 91	М.: Издательство стандартов, 1993	Сталь теплоустойчивая хромомолибденовая 15X5M(15X5MУ). Условный предел остаточного удлинения и остаточного сужения в диапазоне температур 500°600° С	9
159.	ГСССД 159 — 92	М.: Издательство стандартов, 1992	Стали инструментальные быстрорежущие P18, P6M5, 10P6M5-ПМ. Упругие свойства. Модуль нормальной упругости при температурах 20°650° С	8
160.	ГСССД 160 – 93	Депонировано в ГНМЦ «ССД» 06.06.1994г. №741-94кк	Газ природный расчетный. Плотность, фактор сжимаемости, энтальпия, энтропия, изобарная теплоемкость, скорость звука, показатель адиабаты и коэффициент линейного расширения при температурах 250450 К и давлениях 0,112 МПа	19
161.	ГСССД 161 – 93	М.: Издательство стандартов, 1994		

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
162.	ГСССД 162 – 93	Депонировано в ГНМЦ «ССД» 06.06.1994г., №741б-94кк	Сплавы прецензионные с заданным коэффициентом теплового расширения и заданными упругими свойствами. Упругие свойства. Модуль нормальной упругости при температурах 20°600° С	9
163.	ГСССД 163 – 94	Депонировано в ГНМЦ «ССД» 02.06.1994г., №742-94кк	Литий. Коэффициенты динамической вязкости, теплопроводности и число Прандтля в газовой фазе в диапазоне температур 8002500 К и давлений от соответствующих разреженному газу до 500 МПа	28
164.	ГСССД 164 – 94	Депонировано в ГНМЦ «ССД» 7.09.94, №743-кк	Сплав ВТ-6. Теплопроводность при температурах 340900 K	8
165.	ГСССД 165 – 94	Депонировано в ГНМЦ «ССД» 7.09.94, № 744-кк	Сталь нержавеющая марки 12X18H10T. Теплопроводность при температурах 3401100 К	10
166.	ГСССД 166 – 94	Депонировано в ГНМЦ «ССД» 7.09.94, №745-кк	Сталь низкоуглеродистая. Теплопроводность при температурах 3401100 K	10
167.	ГСССД 167 – 94	Депонировано в ГНМЦ «ССД» 25.10.1994г., №747-кк	Влажный воздух. Термодинамические свойства в диапазоне температур 200400К, давлений 0,110 МПа и относительной влажности 0,21,0	46
168.	ГСССД 168 – 94	Депонировано в ГНМЦ «ССД» 25.10.94, №748-кк	Влажный азот. Термодинамические свойства в диапазоне температур 200400 К, давлений 0,110 МПа и относительной влажности 0,21,0	45

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
169.	ГСССД 169 – 94	Депонировано в ГНМЦ «ССД» 25.10.1994гг., №749-94кк	Влажный водород. Термодинамические свойства в диапазоне температур 200400 К, давлений 0,110 МПа и относительной влажности 0,21,0	43
170.	ГСССД 170 – 94	Депонировано в ГНМЦ «ССД» 25.10.1994г., №750-94кк	Влажный гелий. Термодинамические свойства в диапазоне температур 200400 К, давлений 0,110 МПа и относительной влажности 0,21,0	40
171.	ГСССД 171 – 94	Депонировано в ГНМЦ «ССД» 25.10.1994 г., №751-94кк	Влажный аргон. Термодинамические свойства в диапазоне температур 200400 К, давлений 0,11 ОМПа и относительной влажности 0,21,0	45
172.	ГСССД 172 – 94	Депонировано в ГНМЦ «ССД» 25.10.1994г., №752-94кк	Влажный метан. Термодинамические свойства в диапазоне температур 200400 К, давлений 0,110 МПа и относительной влажности 0,21,0	46
173.	ГСССД 173 – 94	Депонировано в ГНМЦ «ССД» 25.10.1994г., №753-94кк	Углерод диоксида влажный. Термодинамические свойства в диапазоне температур 260400 К, давлений 0,110 МПа и относительной влажности 0,21,0	49
174.	ГСССД 174 – 95	Депонировано в ГНМЦ «ССД» 21.03.1995г. №759-95кк	Молибден высокочистый. Изобарная теплоемкость в диапазоне температур 530 К	14

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
175.	ГСССД 175 – 95	Депонировано в ГНМЦ «ССД» 21.03.1995г., №760-95кк	Вода тяжелая (Д2О). Поверхностное натяжение при температурах 3,8°370.697° С	10
176.	ГСССД 176 – 96	Депонировано в ГНМЦ «ССД» 18.06.1996, №768-96-кк	Материалы для образцовых мер ТКЛР. Монокристаллический оксид алюминия. Температурный коэффициент линейного расширения	25
177.	ГСССД 177 – 96	Депонировано в ГНМЦ «ССД» 18.06.1996, №769-96кк	Строительные стали 23X2Г2Т, 35ГС, ВСт.3Пс. Модуль нормальной упругости в диапазоне температур – 70°500° С	15
178.	ГСССД 178 – 96	Депонировано в ГНМЦ «ССД» 18.06.1996г. №770-96кк	Оптические стекла ЛК105, К8, ТК 21. Диэлектрическая проницаемость потерь при температуре 293 К в частотном диапазоне от 10(-1) до 10(6)Гц.	10
179.	ГСССД 179 – 96	Депонировано в ГНМЦ «ССД» 05.01.1997г. №771-кк97	Аргон жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах 851300 К и давлениях 0,11000 МПа	68
180.	ГСССД 180 – 96	Депонировано в ГНМЦ «ССД» 05.01.1997г. №772-кк97	Неон жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах 251000 К и давлениях 0,1700 МПа	68

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
181.	ГСССД 181 – 97	Депонировано в ГНМЦ «ССД» 09.09.1997, №773-97кк	Материалы для образцовых мер ТКЛР. Молибден, алюминий. Температурный коэффициент линейного расширения	22
182.	ГСССД 182 – 97	Депонировано в ГНМЦ «ССД» 24.12.1997, №774-97кк	Хладон Р-134а. Термодинамические свойства в диапазоне температур 180°400° С и давлений 0,0130 МПа	36
183.	ГСССД 183 – 97	Депонировано в ГНМЦ «ССД» 24.12.1997г., №778-97кк	Алюминиевые деформируемые сплавы Амг3, Амг5 и технический алюминий АД1. Упругие свойства. Модуль нормальной упругости при температурах от –100° до 300° С	6
184.	ГСССД 184 – 98	Депонировано в ГНМЦ «ССД» 16.06.1998г., №775-98кк	Металлические конструкционные материалы: сталь 12X18H10T и бронза Бр.Б2,5. Механические свойства в диапазоне температур 4,2293 К	6
185.	ГСССД 185 – 98	Депонировано в ГНМЦ «ССД» 15.12.1998г., №777-98кк	Статистические интенсивности линий, силы осцилляторов и вероятности радиационных переходов для главных оптических серий в изоэлектронной последовательности водорода	37
186.	ГСССД 186 – 99	Депонировано в ГНМЦ «ССД» 28.12.1999г. №779-99кк	Материалы для образцовых мер ТКЛР. Монокристаллический оксид алюминия с ориентацией 59° С относительно тригональной оси (с) кристаллической решетки	15

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
187.	ГСССД 187 – 99 Приняты МГС под номером 98 – 2000	Депонировано в ГНМЦ «ССД» 28.12.1999г.	Вода. Удельный объем и энтальпия при температурах 0°1000° С и давлениях 0,0011000 МПа	41
	Номером 76 — 2000	№779-99кк		
188.	ГСССД 188-99 — см. ГСССД 187 — 99	Депонировано в ГНМЦ «ССД» 28.12.1999г. №779- 99кк	Вода. Удельный объем и энтальпия при температурах 0°1000° С и давлениях 0,0011000 МПа	39
189.	ГСССД 189 – 2000	Депонировано в ГНМЦ «ССД» 26.06.2000г., №781-00кк	Полиамидные и полиамидные пленки. Диэлектрическая проницаемость и тангенс угла диэлектрических потерь	15
190.	ГСССД 190 – 2000	Депонировано в ГНМЦ «ССД» «ССД»18.12.2000г. №782-00кк	Вода. Скорость звука при температурах 0°100° С и давлениях 0,101325100 МПа	12
191.	ГСССД 191 – 2000	Депонировано в ГНМЦ «ССД» 18.12.2000г., № 783-00кк	Длины волн резонансных переходов для атомов и ионов изоэлектронной последовательности гелия	6
192.	ГСССД 192 – 2001	Депонировано в ГНМЦ «ССД» 20.03.2001г., №792а-01кк	Оксид алюминия монокристаллический (лейкосапфир). Компоненты тензора относительной диэлектрической проницаемости в диапазоне температур 93343 К	11

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
193.	ГСССД 193 – 2001	Депонировано в ГНМЦ «ССД» 20.03.2001г., № 793-01кк	Комплексная диэлектрическая проницаемость полифениленоксида (арилокса)	9
194.	ГСССД 194 – 2001	Депонировано в ГНМЦ «ССД» 19.06.2001г. №793а-01кк	Материалы для эталонных мер ТКЛР. Силицированный карбид кремния. Температурный коэффициент линейного расширения	15
195.	ГСССД 195 – 01 взамен ГСССД 18 – 81; ГСССД 94 – 86	Депонировано в ГНМЦ «ССД» 18.12.2001г., №795-01кк	Метан жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах 91700 К и давлениях 0,1100 МПа	43
196.	ГСССД 196 – 01 взамен ГСССД 48 – 83	Депонировано в ГНМЦ «ССД» 18.12.2001г., №796-01кк	Этан жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах 91625 К и давлениях 0,1-70 МПа	49
197.	ГСССД 197 – 01 взамен ГСССД 147 – 90	Депонировано в ГНМЦ «ССД» 18.12.2001г., №795-01кк	Пропан жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах 86700 К и давлениях 0,1-100 МПа	50
198.	ГСССД 198 — 01. Заменена на ГСССД 399-2022	Депонировано в ГНМЦ «ССД» 18.12.2001, №798-01кк	Фундаментальные физические константы	20

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
199.	ГСССД 199 – 2002	Депонировано в ГНМЦ «ССД» 14.05.2002г. №799-01кк	Контрасты Штарковских сдвигов в водородоподобных атомах	11
200.	ГСССД 200 – 2002	Депонировано в ГНМЦ «ССД» 14.05.2002г. №800-02кк	Гелиоподобные многозарядные ионы. Длина волны ридберговых переходов	6
201.	ГСССД 201 — 2002	Депонировано в ГНМЦ «ССД» 14.05.2002г. №801-02кк	Ионы изоэлектрической последовательности водорода. Длина волны бальмеровских переходов	25
202.	ГСССД 202 — 2002	Депонировано в ГНМЦ «ССД» 10.12.2002г.	Морская вода. Скорость звука при соленостях 040промиле, температурах 0°40° С и избыточных давлениях 060 МПа	31
203.	ГСССД 203 — 2003	Депонировано в ГНМЦ «ССД» 24.06.2003г. №803-03кк	Хладон R 134 а. Термодинамические свойства на линиях кипения и конденсации в диапазоне температур 169.85-374.13 К	34
204.	ГСССД 204 — 2003	Депонировано в ГНМЦ «ССД» 30.09.2003г. №804-03кк	Медь чистая марок M1, M2, M3. Механические и физические свойства	13
205.	ГСССД 205 – 2003	Депонировано в ГНМЦ «ССД» 25.11.2003г.	Атом дейтерия. Длины волн лаймановских и бальмеровских переходов	9

N₂	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
206.	ГСССД 206 – 2004	Депонировано	Хладон R116 жидкий и газообразный. Термодинамические	38
		в ГНМЦ «ССД»	свойства, коэффициенты динамической вязкости и	
		16.03.2004г.,	теплопроводности в диапазоне температур 176423К и	
		№ 807-04кк	давлениях 0,150 МПа	
207.	ГСССД 207 – 2004	Депонировано	Влажный азот. Повышающие коэффициенты при	15
		в ГНМЦ «ССД»	температуре 283323 К и давлении 0,110,0 МПа	
		25.05.2004г.		
		№808-04кк		
208.	ГСССД 208 – 2004	Депонировано	Хладон R 143a. Термодинамические свойства на линиях	30
		в ГНМЦ «ССД»	кипения и конденсации в диапазоне температур 161.34-	
		25.11.2004,	345.815 K	
		№ 809-04 кк		
209.	ГСССД 209 – 2005	Депонировано	Длины волн интеркомбинационных переходов для ионов	10
		в ГНМЦ «ССД»	изоэлектронной последовательности гелия	
		17.03.2005,		
		№ 810-05 кк		
210.	ГСССД 210 – 2005	Депонировано	Хладон R 236 ea. Термодинамические свойства на линиях	33
		в ГНМЦ «ССД»	кипения и конденсации в диапазоне температур 220,00 -	
		10.06.2005,	412,45 K	
		№ 811-05 кк		
211.	ГСССД 211 – 2005	Депонировано	Хладон R 218. Плотность, энтальпия, энтропия, изобарная и	41
		в ГНМЦ «ССД»	изохорная теплоемкости, скорость звука в диапазоне	
		08.12.2005,	температур 160470 К и давлений 0,00170 МПа	
		№ 813–05 кк		

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
212.	ГСССД 212 — 2005	Депонировано в ГНМЦ «ССД» 08.12.2005, № 814–05 кк.	Материалы для эталонных мер ТКЛР. Ситалл марки CO-115 М. Температурный коэффициент линейного расширения	13
213.	ГСССД 213 — 2006	Депонировано в ГНМЦ «ССД» 30.03.2006, № 815–06 кк.	Константы штарковских сдвигов (поляризуемости) для триплетных состояний атомов гелия	11
214.	ГСССД 214 — 2006	Депонировано в ГНМЦ «ССД» 15.06.2006, № 816–06 кк.	Хладон R 23. Термодинамические свойства в диапазоне температур от 235 К до 460 К и давлений от 0,01 до 25 МПа	44
215.	ГСССД 215 – 2006	Депонировано в ГНМЦ «ССД» 08.06.2006, № 817–06 кк.	Радионуклиды ²³⁸ Pu, ²³⁹ Pu, ²⁴⁰ Pu, ²⁴¹ Pu, ²⁴² Pu. Энергия, абсолютная вероятность эмиссии альфа-, бета-, гамма-излучений и период полураспада	13
216.	ГСССД 216 – 2006	Депонировано в ГНМЦ «ССД» 28.09.2006, № 818–06 кк.	Материалы для образцовых мер ТКЛР. Легированное кварцевое стекло марки КЛР-1. Температурный коэффициент линейного расширения	17
217.	ГСССД 217 – 2006	Депонировано в ГНМЦ «ССД» 14.12.2006, № 824–06 кк.	1,1,1,2-тетрафторэтан (хладагент R134a) Коэффициенты переноса при атмосферном давлении в диапазоне температур от 240 K до 400 K	19

N₂	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
218.	ГСССД 218 — 2006	Депонировано в ГНМЦ «ССД» 14.12.2006, № 825–06 кк.	Интенсивности спектральных линий атомов водорода в статическом электрическом поле	9
219.	ГСССД 219 – 2007	Депонировано в ГНМЦ «ССД» 15.03.2007, № 826–07 кк.	Электрическое сопротивление металлов и сплавов системы платина-родий (платина, родий, сплавы марок ПлРд-7, ПлРд-10, ПлРд-15, ПлРд-20, ПлРд-30, ПлРд-40) в диапазоне температур (2931800 К)	14
220.	ГСССД 220 — 2007	Депонировано в ГНМЦ «ССД» 15.03.2007, № 827–07 кк.	Термодинамические и транспортные свойства гидрида лития и его изотопных модификаций в конденсированном состоянии в диапазоне температур от 50 K до 1300 K	50
221.	ГСССД 221 — 2007	Депонировано в ГНМЦ «ССД» 15.03.2007, № 828–07 кк.	Электрическое сопротивление и теплопроводность металлов и сплавов системы вольфрам-рений (вольфрам, рений, сплавы марок BP–5, BP –10, BP-20, BP-27) в диапазоне температур от 1200 К до 3000) К	21
222.	ГСССД 222 — 2008	Депонировано в ГНМЦ «ССД» 15. 05. 2008 г., № 829 – 2008 кк.	Эффективные параметры наночастиц диоксида титана для защиты биотканей от излучения в УФ и видимых диапазонах	28
223.	ГСССД 223 — 2007	Депонировано в ГНМЦ «ССД» 13.09.2007, № 830–07 кк.	Растворимость инертных газов в жидких щелочных металлах в диапазонах температур от 600 К до 1500 К и давлений от 0,1 МПа до 10 МПа	33

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
224.	ГСССД 224 — 2007	Депонировано в ГНМЦ «ССД» 13.09.2007, № 831–07 кк.	Материалы для эталонных мер ТКЛР. Легированное кварцевое стекло марки КЛР-2. Температурный коэффициент линейного расширения	17
225.	ГСССД 225 — 2007	Депонировано в ГНМЦ «ССД» 13.09.2007, № 832–07 кк.	Альфа- излучающие радионуклиды ²⁴¹ Am, ²⁴³ Am, ²⁴² Cm, ²⁴⁴ Cm. Энергия, абсолютная вероятность эмиссии альфа-, гамма- излучений и период полураспада	14
226.	ГСССД 226 – 2007	Депонировано в ГНМЦ «ССД» 13.12.2007, № 834–07 кк.	Оптические постоянные монокристаллического кремния, легированного бором, сурьмой и фосфором в спектральном диапазоне 770-1800 нм	25
227.	ГСССД 227 – 2008 взамен ГСССД 91 – 85	Депонировано в ГНМЦ «ССД» 15.05.2008 г., № 837-2008 кк.	Аммиак. Плотность, энтальпия, энтропия, изобарная и изохорная теплоемкости, скорость звука в диапазоне температур 196 – 606 К и давлений 0,001 - 100 МПа	43
228.	ГСССД 228 – 2008	Депонировано в ГНМЦ «ССД» 13.03.2008 г., № 835 – 2008 кк.	Теплопроводность, теплоемкость и температурный коэффициент линейного расширения оптической керамики на основе ZnS, ZnSe, CdTe, ZnTe в диапазоне температур (3001200) К	24
229.	ГСССД 229 – 2007	Депонировано в ГНМЦ «ССД» 13.12.2007, № 833–07 кк.	Плотность свинца, висмута и их эвтектического сплава в конденсированном состоянии в диапазоне температур от 273,15 K до 1500 K	35

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во
1	2	3	4	стр. 5
230.	ГСССД 230 — 2007	М.: Издательство стандартов, 2007	Электрическое сопротивление и теплопроводность металлов и сплавов системы молибден - вольфрам (молибден, сплавы марок ВАМ-7,5, МВ-50) в диапазоне температур (12003000) К	18
231.	ГСССД 231 – 2007	М.: Издательство стандартов, 2007	Заменено на ГСССД 267 – 2012	15
232.	ГСССД 232 — 2008	Депонировано в ГНМЦ «ССД» 25.12.2008 г., № 838 – 2008 кк.	Коэффициент объемного термического расширения свинца, висмута и их эвтектического сплава в конденсированном состоянии в диапазоне температур от 273,15 К до 1500 К	16
233.	ГСССД 233 — 2008	Депонировано в ГНМЦ «ССД» 25.12.2008 г., № 839- 2008 кк.	Радионуклиды ²³⁶ Np, ^{236m} Np, ²³⁷ Np, ²³⁸ Np, ²³⁹ Np. Энергия, абсолютная вероятность эмиссии альфа-, бета, гамма- и характеристического рентгеновского излучений и период полураспада	15
234.	ГСССД 234 — 2008	Депонировано в ГНМЦ «ССД» 13.03.2008 г., № 836 – 2008 кк.	Электрическое сопротивление и теплопроводность металлов и сплавов системы молибден - вольфрам (молибден, рений, сплавы марок BAM-7,5, MB-50) в диапазоне температур от 1200 до 3000 К	25
235.	ГСССД 235 – 2008	Депонировано в ГНМЦ «ССД» 25.12.2008 г., № 840 – 2008 кк.	Температуры солидуса, ликвидуса и твердофазных превращений литейных алюминиевых сплавов в различных структурных состояниях	21

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п	_	об издании		стр.
1	2	3	4	5
236.	ГСССД 236 — 2009	Депонировано в ГНМЦ «ССД» 26.03.2009 г., № 3	Скорость звука в жидких свинце, висмуте и их эвтектическом сплаве в диапазоне от температуры плавления до 1300 К	32
237.	ГСССД 237 – 2008. Заменена на ГСССД 399-2022	Протокол НТК по метрологии и измерительной технике Ростехрегулирован ия № 14 доп. 2 от 26.12.2008 г.	Фундаментальные физические константы	24
238.	ГСССД 238 — 2009	Депонировано в ГНМЦ «ССД» 26.03.2009 г., № 843 – 2009 кк.	Молибден. Температурный коэффициент линейного расширения в диапазоне температур от 700 К до 2700 К	19
239.	ГСССД 239 — 2009	Депонировано в ГНМЦ «ССД» 25.06.2009 г., № 841 - 2009 кк.	Таблицы стандартных справочных данных. Материалы для эталонных мер ТКЛР. Сплав Ni ₃ Al. Температурный коэффициент линейного расширения	13
240.	ГСССД 240 — 2009	Депонировано в ГНМЦ «ССД» 26.03.2009 г., № 844 – 2009 кк.	Теплопроводность, теплоемкость, температурный коэффициент линейного расширения, скорость звука керамик на основе карбида кремния и нитрида алюминия SiC-AlN в диапазоне температур от 300 К до 1200 К и пористости от 0 до 10 %	25

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во стр.
1	2	3	4	5
241.	ГСССД 241 — 2010	Депонировано в ГНМЦ «ССД» 01.04.2010 г., № 845-2010 кк	Деформируемые алюминиевые сплавы в различных структурных состояниях. Температуры солидуса, ликвидуса и температуры твердофазных превращений	23
242.	ГСССД 242 — 2010	Депонировано в ГНМЦ «ССД» 01.04.2010 г., № 846-2010 кк	Плотность и коэффициент объемного термического расширения олова и олово-свинцового эвтектического сплава в конденсированном состоянии в диапазоне температур 273,15 1500 К	37
243.	ГСССД 243 — 2010	Депонировано в ГНМЦ «ССД» 01.04.2010 г., № 847-2010 кк	Коррозионная стойкость металлических материалов и защитных покрытий (наноквазиметаллов) в средах хлебопекарного производства	38
244.	ГСССД 244 — 2010	Депонировано в ГНМЦ «ССД» 01.04.2010 г., № 848-2010 кк	Плотность и коэффициент объемного термического расширения галлия, индия и их эвтектического сплава в конденсированном состоянии в диапазоне температур 273,15 1500 К	38
245.	ГСССД 245 — 2010	Депонировано в ГНМЦ «ССД» 01.04.2010 г., № 849-2010 кк	Радионуклид ²²⁶ Rа в равновесии с дочерними продуктами распада ²²² Rn, ²¹⁸ Po, ²¹⁸ At, ²¹⁸ Rn, ²¹⁴ Pb, ²¹⁴ Bi, ²¹⁴ Po, ²¹⁰ Tl, ²¹⁰ Pb, ²¹⁰ Bi, ²¹⁰ Po. Энергия, абсолютная вероятность эмиссии альфа-, бета-, гамма- и характеристического рентгеновского излучений и период полураспада	16

N₂	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
246.	ГСССД 246 – 2010	Депонировано в ГНМЦ «ССД» 03.06. 2010 г., № 854 – 2010 кк	Равновесные температуры плавления тонких пленок никеля толщиной 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 нм на поверхностях SiO_2 , Al_2O_3 и аморфного углерода	17
247.	ГСССД 247 — 2010	Депонировано в ГНМЦ «ССД» 03.06. 2010 г., № 855 – 2010 кк	Равновесные температуры плавления тонких пленок меди толщиной 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 нм на поверхностях SiO_2 , Al_2O_3 и аморфного углерода	16
248.	ГСССД 248 – 2010	Депонировано в ГНМЦ «ССД» 01.04.2010 г., № 850-2010 кк	Промышленные никель-хромовые сплавы. Удельная теплоемкость в диапазоне температур от 300 K до 1200 K	18
249.	ГСССД 249 — 2010	Депонировано в ГНМЦ «ССД» 01.04.2010 г., № 851-2010 кк	Коррозионная стойкость металлических материалов и защитных покрытий (наноквазиметаллов) в средах витаминного производства	34
250.	ГСССД 250 – 2010	Депонировано в ГНМЦ «ССД» 01.04.2010 г., № 852-2010 кк	Кварцевая волокнистая теплоизоляция. Оптические свойства	46
251.	ГСССД 251 – 2010	Депонировано в ГНМЦ «ССД» 03.06.2010 г., № 856-2010 кк	Теплопроводность, теплоемкость и коэффициент линейного теплового расширения пьезосегнетокерамик на основе цирконата-титаната свинца в диапазоне температур от 300 К до 800 К	40

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
П/П	2	об издании	4	стр. 5
1	=	3	4	_
252.	ГСССД 252 — 2011	Депонировано в ГНМЦ «ССД» 02.06.2011 г., № 858-2011 кк	Энергия характеристического рентгеновского излучения при переходах в электронных оболочках атомов химических элементов с атомным номером от 4 до 100	30
253.	ГСССД 253 — 2011	М.: Издательство стандартов, 2011	Атомные константы мультипольных восприимчивостей и факторов экранирования для основного состояния водородоподобных атомов с Z = 1 - 100	12
254.	ГСССД 254 — 2011	Депонировано в ГНМЦ «ССД» 02.06.2011 г., № 859-2011 кк	Вольфрам. Температурный коэффициент линейного расширения в диапазоне температур 22003500 К"	18
255.	ГСССД 255 — 2011	Депонировано в ГНМЦ «ССД» 02.06.2011 г., № 860-2011 кк	Вязкость жидких щелочных металлов в диапазоне от температуры плавления до 1500 К	37
256.	ГСССД 256 – 2011	Депонировано в ГНМЦ «ССД» 02.06.2011 г., № 861-2011 кк	Гептафторбутаноловый эфир HFE-347mcc. Плотность, энтальпия, энтропия, изобарная и изохорная теплоемкости, скорость звука в диапазоне температур 250450 К и давлений 0,014,5 МПа	21
257.	ГСССД 257 — 2011	Депонировано в ГНМЦ «ССД» 02.06.2011 г., № 862-2011 кк	Плотность и термическое расширение жидких щелочных металлов в диапазоне от температуры плавления до критической точки	49

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
258.	ГСССД 258 — 2011	Депонировано в ГНМЦ «ССД» 02.06.2011 г., № 863-2011 кк	Промышленные алюминиевые сплавы. Удельная теплоемкость в диапазоне температур (300650) К	18
259.	ГСССД 259 – 2011	Депонировано в ГНМЦ «ССД» 02.06.2011 г., № 857-2011 кк	Предельные и ароматические углеводороды. Скорость звука в диапазоне температур от -50 до 400°С и давлений от 0,1 до 600 МП	91
260.	ГСССД 260 – 2011	Депонировано в ГНМЦ «ССД» 02.06.2011 г., № 864-2011 кк	Радионуклиды ²³² U, ²³³ U, ²³⁴ U, ²³⁵ U, ²³⁶ U, ²³⁷ U, ²³⁸ U, ²³⁹ U. Энергия, абсолютная вероятность эмиссии альфа-, бета-, гамма- и характеристического рентгеновского излучений и период полураспада	19
261.	ГСССД 261 – 2011	Депонировано в ГНМЦ «ССД» 02.06.2011 г., № 865-2011 кк	Вода. Коэффициент динамической вязкости при температурах 0900°С и давлениях от 0 до 1000МПа	27
262.	ГСССД 262 — 2011	Депонировано в ГНМЦ «ССД» 02.06.2011 г., № 865-2011 кк	Термодинамические свойства насыщенных и перегретых паров цезия в интервале температур 4001700 К и давлений 0,015 МПа	61
263.	ГСССД 263 – 2011	М.: Издательство стандартов, 2011	Заменено на ГСССД 312 – 2015	34

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
264.	ГСССД 264 – 2011	Протокол НТК по метрологии и измерительной технике Росстандарта № 7 доп. От 02.06.2011	Арсениды и антимониды индия и галлия. Теплопроводность, электропроводность и термоэдс в твердом и жидком состояниях от 300 К до 1300 К	31
265.	ГСССД 265 — 2011	г. Протокол НТК по метрологии и измерительной технике Росстандарта № 7 доп. от 02.06.2011 г.	электропроводность и термоэдс в твердом и жидком	29
266.	ГСССД 266 – 2012	Протокол НТК по метрологии и измерительной технике Росстандарта № 9 от 05.07.2012 г.	Безсвинцовая пьезокерамика на основе ниабата натрия. Теплопроводность, теплоемкость и тепловой коэффициент линейного расширения в диапазоне температур 300900 К	19
267.	ГСССД 267 — 2012	Протокол НТК по метрологии и измерительной технике Росстандарта № 9 от 05.07.2012 г.	Значения энергии связи электронов внутренних электронных уровней в атомах химических элементов с атомным номером от 3 до 92	23

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
П/П	2	об издании	4	стр.
1	2	3	4	5
268.	ГСССД 268 – 2012	Протокол НТК	Критические температуры и критические давления	41
		по метрологии	индивидуальных веществ	
		и измерительной		
		технике		
		Росстандарта № 9		
		от 05.07.2012 г.		
269.	ГСССД 269 – 2012	Протокол НТК	Метанол. Термодинамические свойства на линиях кипения	41
		по метрологии	и конденсации в диапазоне температур 175,61512,77 К	
		и измерительной		
		технике		
		Росстандарта № 9		
		от 05.07.2012 г.		
270.	ГСССД 270 – 2012	Протокол НТК	Материалы для эталонных мер ТКЛР. Молибден.	27
	, .	по метрологии	Температурный коэффициент линейного расширения в	
		и измерительной		
		технике		
		Росстандарта № 9		
		от 05.07.2012 г.		
271.	ГСССД 271 – 2012	Протокол НТК	Радионуклиды ²² Na, ⁵⁴ Mn, ⁵⁷ Co, ⁶⁰ Co, ⁶⁵ Zn, ⁷⁵ Se, ⁸⁸ Y, ¹¹⁹ Cd,	22
		по метрологии	¹¹³ Sn, ¹³³ Ba, ¹³⁷ Cs, ¹³⁹ Ce, ¹⁵² Eu, ²²⁸ Th, ²⁴¹ Am. Энергия,	
		и измерительной	абсолютная вероятность эмиссии гамма- и	
		технике	характеристического рентгеновского излучений и период	
		Росстандарта № 9	полураспада	
		от 05.07.2012 г.		

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
272.	ГСССД 272 – 2012	Протокол НТК по метрологии и измерительной технике Росстандарта № 9 от 05.07.2012 г.	растворах в диапазонах температур 293353 К, давлений	15
273.	ГСССД 273 – 2012	Протокол НТК по метрологии и измерительной технике Росстандарта № 9 от 05.07.2012 г.	легированных сталей и защитных покрытий	45
274.	ГСССД 274 – 2012	Протокол НТК по метрологии и измерительной технике Росстандарта № 9 от 05.07.2012 г.	Удельная теплоемкость промышленных титановых сплавов в интервале температур (300800) К	16
275.	ГСССД 275 — 2012	Протокол НТК по метрологии и измерительной технике Росстандарта № 9 от 05.07.2012 г.	безызлучательных переходах в электронных оболочках	29

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
276.	ГСССД 276 – 2012	Протокол НТК	Плотность и термическое расширение магния и магний-	23
		по метрологии	свинцового эвтектического сплава в конденсированном	
		и измерительной	состоянии в диапазоне температур (273,151100) К	
		технике		
		Росстандарта № 9		
		от 05.07.2012 г.		
277.	ГСССД 277 – 2011	Протокол НТК	Кварц монокристаллический. Компоненты тензора	13
		по метрологии	относительной диэлектрической проницаемости в	
		и измерительной	диапазоне температур 77373 К	
		технике		
		Росстандарта № 7		
		доп. от 02.06.2011		
		Γ.		
278.	ГСССД 278 – 2011	Протокол НТК	Гранат алюмоиттриевый. Относительная диэлектрическая	11
		по метрологии	проницаемость в диапазоне температур 77373 К	
		и измерительной		
		технике		
		Росстандарта № 7		
		доп. от 02.06.2011		
		Γ.		
279.	ГСССД 279 – 2013	Протокол НТК	Сегнетопьезокерамики на основе (1-х)	21
		по метрологии	(K,Na)(Nb,Ta)O3+xLiSbO3 +модификатор. Температура	
		и измерительной	Кюри, диэлектрические и пьезоэлектрические свойства в	
		технике	диапазоне температур (300÷700) К	
		Росстандарта № 3		
		от 31.10.2013 г.		

N₂	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
280.	ГСССД 280 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	системы (Na, K , $Cd_{0.5}$) NbO ₃ . Диэлектрические,	22
281.	ГСССД 281 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	Пьезокерамика на основе ниабата серебра. Теплопроводность, теплоемкость и тепловой коэффициент линейного расширения в диапазоне 5001400 К	19
282.	ГСССД 282 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	Этанол. Термодинамические свойства на линиях кипения и конденсации в диапазоне температур 250.0 – 514.73 К	37
283.	ГСССД 283 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	свойства, коэффициенты динамической вязкости и	55

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
284.	ГСССД 284 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	Метан жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах 91700 К и давлениях до 100 МПа	48
285.	ГСССД 285 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	Диоксиды серы, азота моноксид, азота диоксид, аммиак, сероводород. Спектральные физические константы в ультрафиолетовой области	88
286.	ГСССД 286 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	Радионуклиды ⁴⁴ Ti + ⁴⁴ Sc, ⁵⁴ Mn, ⁵⁵ Fe, ⁵⁷ Co, ⁶⁵ Zn, ¹⁰⁹ Cd, ²⁰⁷ Bi, ²⁴¹ Am. Энергия, абсолютная вероятность эмиссии характеристического рентгеновского и низкоэнергетического гамма- излучения и период полураспада	15
287.	ГСССД 287 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	Радионуклиды ⁵⁶ Co, ⁷⁵ Se, ¹¹⁰ mAg, ¹³³ Ba, ¹⁵² Eu, ¹⁸² Ta, ¹⁹² Ir. Энергия, абсолютная вероятность эмиссии гамма-излучения и период полураспада	40

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании	_	стр.
1	2	3	4	5
288.	ГСССД 288 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	Теплопроводность бинарных водных растворов H ₂ O-KBr солей галоидов щелочных металлов в диапазонах температур 290470 К при давлениях 0,1100 МПа	17
289.	ГСССД 289 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	Теплофизические свойства газового конденсата Уренгойского месторождения на линии начала кипения (линии насыщения) и в жидкой фазе в диапазоне температур 250600 К при давлении до 60 МПа	35
290.	ГСССД 290 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	Теплофизические свойства газового конденсата Ямбурского месторождения на линии начала кипения (линии насыщения) и в жидкой фазе в диапазоне температур 250600 К при давлении до 60 МПа	33
291.	ГСССД 291 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	н-Пептан. Термодинамические свойства в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	59

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во
1	2	3	4	стр. 5
292.	ГСССД 292 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	н-Гептан. Термодинамические свойства в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	61
293.	ГСССД 293 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	Теплопроводность бинарных водных растворов нитратов, хлоридов и сульфидов солей лантаноидов в диапазонах температур 290470 К и давлений 0,1100 МПа	36
294.	ГСССД 294 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	Теплопроводность тройных водных растворов солей H2O-KF-KJ и H2O-KBr-KJ галоидов щелочных металлов в диапазонах температур 290470 К и давлений 0,1100 МПа	29
295.	ГСССД 295 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	Теплофизические свойства газового конденсата Астраханского месторождения на линии начала кипения (линии насыщения) и в жидкой фазе в диапазоне температур 250600 К при давлении до 60 МПа	35

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
296.	ГСССД 296 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	Карачаганакского месторождения на линии начала кипения	33
297.	ГСССД 297 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	Теплофизические свойства газового конденсата Оренбургского месторождения на линии начала кипения (линии насыщения) и в жидкой фазе в диапазоне температур 250600 К при давлении до 60 МПа	33
298.	ГСССД 298 — 2013	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 31.10.2013 г.	Теплофизические свойства газового конденсата Шуртанского месторождения на линии начала кипения (линии насыщения) и в жидкой фазе в диапазоне температур 250600 К при давлении до 60 МПа	34
299.	ГСССД 299 — 2014	Протокол НТК по метрологии и измерительной технике Росстандарта № 6 от 24.11.2014 г.	теплоемкость, энтальпия, энтропия, скорость звука, коэффициенты теплопроводности и вязкости) в диапазоне температуры от тройной точки до 700 К при давлениях до	73

№ п/п	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
	2	об издании	4	стр. 5
1	2	3	4	
300.	ГСССД 300 — 2014	Протокол НТК по метрологии и измерительной технике Росстандарта № 6 от 24.11.2014 г.	теплоемкость, энтальпия, энтропия, скорость звука, коэффициенты теплопроводности и вязкости) в диапазоне температуры от тройной точки до 700 К при давлениях до	68
301.	ГСССД 301 — 2014	Протокол НТК по метрологии и измерительной технике Росстандарта № 6 от 24.11.2014 г.	теплоемкость, энтальпия, энтропия, скорость звука, коэффициенты теплопроводности и вязкости) в диапазоне температуры от тройной точки до 700 К при давлениях до	67
302.	ГСССД 302 — 2014	Протокол НТК по метрологии и измерительной технике Росстандарта № 6 от 24.11.2014 г.	теплоемкость, энтальпия, энтропия, скорость звука, коэффициенты теплопроводности и вязкости) в диапазоне температуры от тройной точки до 700 К при давлениях до	69
303.	ГСССД 303 — 2015	Протокол НТК по метрологии и измерительной технике Росстандарта № 4 от 25.09.2015 г.	Диэлектрические и пьезоэлектрические характеристики при	18

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во стр.
1	2	3	4	5
304.	ГСССД 304 — 2015	Протокол НТК по метрологии и измерительной технике Росстандарта № 4 от 25.09.2015 г.	La ₂ S ₃ , Gd ₂ S ₃ , Dy ₂ S ₃ , La ₂ Te ₃ , Pr ₂ Te ₃ в диапазоне температур	34
305.	ГСССД 305 – 2015	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 27.10.2015 г.	*	22
306.	ГСССД 306 – 2015	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 27.10.2015 г.		19
307.	ГСССД 307 — 2015	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 27.10.2015 г.	Сегнетомягкие керамики на основе многокомпонентной системы ($Pb_{1-\alpha_1-\alpha_2}Sr_{\alpha_1}Ba_{\alpha_2}$) $\left[Ti_xZr_y\left\langle (Nb_{2/3}Zn_{1/3})(Nb_{2/3}Mg_{1/3})\right\rangle_{1-x-y}\right]O_3$. Диэлектрические, пьезоэлектрические и упругие характеристики при комнатной температуре	24

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во
1	2	3	4	стр. 5
308.	ГСССД 308 — 2015	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 27.10.2015 г.	-	45
309.	ГСССД 309 — 2015	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 27.10.2015 г.	Шестифтористая сера. Термодинамические свойства в диапазоне температур 230 650 К и давлений 0,01 50 МПа, включая критическую область	61
310.	ГСССД 310 – 2015	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 27.10.2015 г.	Вода. Коэффициент теплопроводности при температурах 0900°C и давлениях от соответствующих разряженному газу до 1000 МПа	18
311.	ГСССД 311 — 2015	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 27.10.2015 г.	Водород нормальный. Теплофизические свойства при температурах до 1000 К и давлениях до 100 МПа	41

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во стр.
1	2	3	4	5
312.	ГСССД 312 — 2015	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 27.10.2015 г.	Диоксид углерода жидкий и газообразный. Теплофизические свойства при температурах до 1100 К и давлениях до 100 МПа	46
313.	ГСССД 313 — 2015	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 27.10.2015 г.	Радионуклиды ²²⁹ Th, ²³⁰ Th, ²³¹ Th, ²³² Th, ²³³ Th, ²³⁴ Th. Энергия, абсолютная вероятность эмиссии альфа-, бета-, гамма- и характеристического рентгеновского излучений и период полураспада	18
314.	ГСССД 314 – 2015. Заменена на ГСССД 399-2022	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 27.10.2015 г.	Фундаментальные физические константы.	22
315.	ГСССД 315 — 2015	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 27.10.2015 г.	н-Нонан. Теплофизические свойства (плотность, теплоемкость, энтальпия, энтропия, скорость звука, коэффициенты теплопроводности и вязкости) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	64

N₂	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
316.	ГСССД 316 – 2015	Протокол НТК по метрологии и измерительной технике Росстандарта № 3 от 25.10.2015 г.	теплоемкость, энтальпия, энтропия, скорость звука,	69
317.	ГСССД 317 — 2017. Заменена на ГСССД 399-2022	_	Фундаментальные физические константы	20
318.	ГСССД 318 — 2017	Протокол НТК по метрологии и измерительной технике Росстандарта № 56 – пр. от 23.06.2017 г.		60
319.	ГСССД 319 – 2017	Протокол НТК по метрологии и измерительной технике Росстандарта № 56 -пр. от $23.06.2017$ г.	Сплавы «Титан-Никель». Параметры кристаллической решетки в диапазоне концентраций никеля 49-52% Ni для материалов с различными температурами мартенситных фазовых превращений	35

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
320.	ГСССД 320 — 2017	Протокол НТК по метрологии и измерительной технике Росстандарта № 98 – пр. от 31.10.2017 г.	, 10	28
321.	ГСССД 321 — 2017	Протокол НТК по метрологии и измерительной технике Росстандарта № 98 – пр. от 31.10.2017 г.		34
322.	ГСССД 322 — 2017	Протокол НТК по метрологии и измерительной технике Росстандарта № 98 – пр. от 31.10.2017 г.	основе ниобатов натрия и калия. Диэлектрические и	23

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
323.	ГСССД 323 — 2017	Протокол НТК по метрологии и измерительной технике Росстандарта № 98 – пр. от 31.10.2017 г.	Li(a)K(b)Na(c)Nb(d)Ta(m)Sb(n)O(3)+z[Bi(2)O(3)-	23
324.	ГСССД 324 — 2017	Протокол НТК по метрологии и измерительной технике Росстандарта № 98 — пр. от 31.10.2017 г.	Медно-цинковые сплавы. Температурный коэффициент линейного расширения и удельное электрическое сопротивление в диапазоне от 300 до 2/3 температуры плавления, К	41
325.	ГСССД 325 — 2017	Протокол НТК по метрологии и измерительной технике Росстандарта № 98 – пр. от 31.10.2017 г.	излучательная способности) в около и сверхкритической	31

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
326.	ГСССД 326 — 2017	Протокол НТК по метрологии и измерительной технике Росстандарта № 98 – пр. от 31.10.2017 г.	Пьезокерамики на основе ниобата лития. Теплопроводность, теплоемкость и температурный коэффициент линейного расширения в диапазоне температур от 300 до 900 К	26
327.	ГСССД 327 — 2017	Протокол НТК по метрологии и измерительной технике Росстандарта № 98 – пр. от 31.10.2017 г.	Теплопроводность в диапазоне температур $300-800$ К и концентраций окислов щелочных металлов R_2O в мол %:Li ₂ O (20, 25); Na ₂ O (12, 16, 20, 28); K ₂ O (13, 16, 19, 22);	27
328.	ГСССД 328 – 2017	Протокол НТК по метрологии и измерительной технике Росстандарта № 98 – пр. от 31.10.2017 г.	Материалы для эталонных мер ТКЛР. Графит марки ГИП-4. Коэффициент температурного линейного расширения в интервале температур от 25 до 2500 °C	23

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
329.	ГСССД 329 — 2017	Протокол НТК по метрологии и измерительной технике Росстандарта № 98 — пр. от 31.10.2017 г.	Титан. Параметры кристаллической решётки в диапазоне температур от 5 К до 300 К. Температурный коэффициент линейного расширения в диапазоне температур от 5К до 1200 К	34
330.	ГСССД 330 — 2017	Протокол НТК по метрологии и измерительной технике Росстандарта № 98 — пр. от 31.10.2017 г.	Титанаты стронция и бария. Параметры кристаллической решетки в диапазоне концентраций 0-50% ат. Ва	28
331.	ГСССД 331 — 2017	Протокол НТК по метрологии и измерительной технике Росстандарта № 98 – пр. от 31.10.2017 г.	теплоемкость, энтальпия, энтропия, скорость звука, коэффициенты теплопроводности и вязкости) в диапазоне температуры от тройной точки до 700 К при давлениях до	61

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во стр.
1	2	3	4	5
332.	ГСССД 332 — 2017	Протокол НТК по метрологии и измерительной технике Росстандарта № 98 – пр. от 31.10.2017 г.	Пропан жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах 86700 К и давлениях до 100 МПа (взамен таблиц ГСССД 197-01)	51
333.	ГСССД 333 — 2017	Протокол НТК по метрологии и измерительной технике Росстандарта № 98 – пр. от 31.10.2017 г.	Радионуклиды — продукты нейтронных дозиметрических реакций ⁴⁷ Sc, ⁴⁸ Sc, ⁵⁷ Ni, ⁶⁷ Cu, ⁷⁴ As, ¹²⁶ I, ¹³² Te, ¹⁶⁷ Tm, ¹⁹⁶ Au. Энергия, абсолютная вероятность эмиссии гамма - излучения и период полураспада	17
334.	ГСССД 334 — 2018	Приказ Росстандарта № 1815 от 24.08.2018 г.	н-Додекан. Теплофизические свойства (плотность, теплоемкость, энтальпия, энтропия, скорость звука, коэффициенты теплопроводности и вязкости) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	72
335.	ГСССД 335 — 2018	Приказ Росстандарта № 1815 от 24.08.2018 г.	н-Тридекан. Теплофизические свойства (плотность, теплоемкость, энтальпия, энтропия, скорость звука, коэффициенты теплопроводности и вязкости) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	66

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
336.	ГСССД 336 — 2018	Приказ Росстандарта № 1815 от 24.08.2018 г.	н-Ундекан. Теплофизические свойства (плотность, теплоемкость, энтальпия, энтропия, скорость звука, коэффициенты теплопроводности и вязкости) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	63
337.	ГСССД 337 — 2018	Приказ Росстандарта № 1969 от 14.09.2018 г.	Изобутан жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах от 114 К до 600 К и давлениях до 35 МПа	50
338.	ГСССД 338 — 2018	Приказ Росстандарта № 1969 от 14.09.2018 г.	Нормальный бутан жидкий и газообразный. Термодинамиче свойства, коэффициенты динамической вязкости теплопроводности при температурах от 135 К до 600 давлениях до 70 МПа	53
339.	ГСССД 339 — 2018	Приказ Росстандарта № 1969 от 14.09.2018 г.	Молибден. Параметры кристаллической решетки. Коэффициент линейного теплового расширения в	33
340.	ГСССД 340 – 2018	Приказ Росстандарта № 1969 от 14.09.2018 г.		40

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
341.	ГСССД 341 — 2018	Приказ Федерального агентства по техническому регулированию и метрологии №	Ванадий. Параметры кристаллической решетки. Коэффициент линейного теплового расширения в диапазоне температур от 240 K до 400 K	33
		2178 от 18.10.18 г.		
342.	ГСССД 342 — 2018	Приказ Федерального агентства по техническому регулированию и метрологии № 2178 от 18.10.18 г.	Масс - спектры витаминов и маркеров. Витамин D2-25OH, витамин D3-25 OH	23
343.	ГСССД 343 — 2018	Приказ Федерального агентства по техническому регулированию и метрологии № 2178 от 18.10.18 г.	Масс-спектры пептидов и пептидных гормонов. Пептид T12	15

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во стр.
1	2	3	4	5
344.	ГСССД 344 – 2018	Приказ Федерального агентства по техническому регулированию и метрологии № 2178 от 18.10.18 г.	Масс-спектры пестицидов и контаминантов. Афлатоксин B1, афлатоксин B2	21
345.	ГСССД 345 — 2018	Приказ Федерального агентства по техническому регулированию и метрологии № 2178 от 18.10.18 г.	Масс-спектры сильнодействующих веществ. Кофеин, никотин, котинин, атенолол	24
346.	ГСССД 346 – 2018	Приказ Федерального агентства по техническому регулированию и метрологии № 2178 от 18.10.18 г.	Масс-спектры антибиотиков. Линкомицин, левофлоксацин	20

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
347.	ГСССД 347 — 2018	Приказ Федерального агентства по техническому регулированию и метрологии № 2588 от 06.12.18 г.	Силицид ванадия. Параметры кристаллической решетки в диапазоне концентраций 20 ат.% до 25 ат.% кремния. Коэффициент линейного теплового расширения в диапазоне температур от 20 К до 300 К	17
348.	ГСССД 348 – 2018	Приказ Федерального агентства по техническому регулированию и метрологии № 2588 от 06.12.18 г.	Соединения на основе дигидрофосфата калия. Параметры кристаллической решетки в диапазоне концентраций 15 ат.% до 80 ат.% дейтерия	23
349.	ГСССД 349 — 2019	ПРИКАЗ Росстандарта № 793 от 09.04.2019 г. Деп. в ГНМЦ «ССД» № 928 – 2019 кк.	Железо АРМКО. Температуропроводность, теплоемкость, теплопроводность, удельное электрическое сопротивление, электронная теплопроводность в диапазоне температур от 350 К до 1700 К	24

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во
1	2	3	4	стр. 5
350. 351.	ГСССД 350 — 2019 ГСССД 351 — 2019	ПРИКАЗ Росстандарта № 793 от 09.04.2019 г. Деп. в ГНМЦ «ССД» № 929 – 2019 кк. ПРИКАЗ Росстандарта № 1707 от 23.07.2019 г. Деп. в ГНМЦ «ССД» № 930 – 2019 кк.	Сегнетоэлектрики релаксоры на основе трехкомпонентной системы, содержащей ниобаты натрия, калия, кадмия. Диэлектрические и пьезоэлектрические характеристики при температуре 25 °C Радионуклиды ²² Na, ²⁴ Na, ⁴⁰ K, ⁴² K, ⁴⁶ Sc, ⁵¹ Cr, ⁵⁴ Mn, ⁵⁶ Mn, ⁵⁵ Fe, ⁵⁹ Fe, ⁵⁶ Co, ⁵⁷ Co, ⁵⁸ Co, ⁶⁰ Co, ⁶⁴ Cu, ⁶⁵ Zn, ⁶⁶ Ga, ⁶⁷ Ga, ⁶⁸ Ga, ⁷⁵ Se, ⁸⁵ Kr, ⁸⁵ Sr, ⁸⁸ Y, ^{93m} Nb, ⁹⁴ Nb, ⁹⁵ Nb. Энергия, абсолютная вероятность эмиссии гамма- и характеристического рентгеновского излучений и период полураспада. Актуализированные данные характеристик распада радионуклидов	23
352.	ГСССД 352 — 2019	ПРИКАЗ Росстандарта № 793 от 09.04.2019 г. Деп. в ГНМЦ «ССД» № 931 – 2019 кк.	Диборид вольфрама (W_2B_5). Параметры кристаллической решетки. Коэффициент линейного теплового расширения в диапазоне температур от 295 К до 300 К	36

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
353.	ГСССД 353 — 2019	ПРИКАЗ Росстандарта № 793 от 09.04.2019 г. Деп. в ГНМЦ «ССД» № 932 – 2019 кк.	Тантал. Параметры кристаллической решетки. Коэффициент линейного теплового расширения в диапазоне от 300 К до 800 К	47
354.	ГСССД 354 — 2019	ПРИКАЗ Росстандарта № 1707 от 23.07.2019 г. Деп. в ГНМЦ «ССД» № 933 – 2019 кк.	Максимумы пиков рамановского спектра ацетамидофенола, 1,4-бис (2-метилстирил) бензола, бензонитрила, нафталина, полистирола, серы, смеси толуола и ацетонитрила и циклогексана	19
355.	ГСССД 355 — 2019	ПРИКАЗ Росстандарта № 793 от 09.04.2019 г. Деп. В ГНМЦ «ССД» № 934 – 2019 кк.	Теплофизические свойства жидкой воды от давления в тройной точке до 0,3 МПа при температурах от 0 °C до 100 °C	18

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
356.	ГСССД 356 – 2019	ПРИКАЗ Росстандарта № 793 от 09.04.2019 г. Деп. в ГНМЦ «ССД» № 935 – 2019 кк.	Титановые сплавы марки ВТ. Скорость звука, относительное температурное расширение, плотность и модуль Юнга в диапазоне температур от 20 °C до 800 °C	32
357.	ГСССД 357 — 2019	ПРИКАЗ Росстандарта № 793 от 09.04.2019 г. Деп. в ГНМЦ «ССД» № 936 – 2019 кк.	Критические температуры и критические давления термонестабильных веществ	34
358.	ГСССД 358 — 2019	ПРИКАЗ Росстандарта № 793 от 09.04.2019 г. Деп. В ГНМЦ «ССД» № 937 – 2019 кк.	Теплопроводность оптически прозрачных керамик на основе твердых растворов $NaLaS_2$ — CaS в диапазоне температур от 80 K до 400 K	34

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
359.	ГСССД 359 — 2019	ПРИКАЗ Росстандарта № 793 от 09.04.2019 г. Деп. в ГНМЦ «ССД» № 938 – 2019 кк.	Пьезокерамические материалы а $NaNbO_3$ + $bKNbO_3$ + $cCuNb_2O_6$. Диэлектрические и пьезоэлектрические характеристики при температуре 25 °C	22
360.	ГСССД 360 — 2019	ПРИКАЗ Росстандарта № 1707 от 23.07.2019 г. Фонд ГСССД № 939 – 2019 кк.	Титан с добавками, стабилизирующими бета (β)-фазу. Параметры кристаллической решетки фазы с концентрацией молибдена до 15 %, алюминия до 6 %. коэффициент линейного теплового расширения бета-фазы (ВТ1)	41
361.	ГСССД 361 – 2019	ПРИКАЗ Росстандарта № 2723 от 18.11.2019 г. Фонд ГСССД № 946-2019 кк.	Пьезокерамические материалы на основе $(1-x-y)$ NaNbO $_3$ – x KNbO $_3$ – y Cd $_{0,5}$ NbO $_3$. Диэлектрические, пьезоэлектрические и упругие характеристики в диапазоне температур от 300 K до 600 K	29
362.	ГСССД 362 — 2019	ПРИКАЗ Росстандарта № 2723 от 18.11.2019 г. Фонд ГСССД № 947-2019 кк.	Пьезокерамические материалы на основе ниобатов натрия - лития. Диэлектрические, пьезоэлектрические и упругие характеристики в диапазоне температур от 300 К до 500 К	30

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
363.	ГСССД 363 – 2020	ПРИКА3	Радионуклиды ⁹⁹ MO, ⁹⁹ mTC, ¹⁰³ RU, ¹⁰⁶ RU, ¹⁰⁶ RH, ¹⁰⁸ mAG,	26
		Росстандарта	¹¹⁰ mAG, ¹⁰⁹ CD, ¹¹¹ IN, ¹¹³ SN, ¹²⁵ SB, ¹²³ mTE, ¹²³ I, ¹²⁵ I, ¹²⁹ I, ¹³¹ I,	
		№ 1426	¹³⁴ CS, ¹³⁷ CS, ¹³³ BA, ¹³⁹ CE, ¹⁴¹ CE, ¹⁴⁴ CE, ¹⁴⁴ PR, ¹⁵³ SM. Энергия,	
		от 25.08.2020 г.	абсолютная вероятность эмиссии гамма - и	
		Фонд ГСССД	характеристического рентгеновского излучений и период	
		№ 943 — 2022 кк	полураспада. актуализированные данные характеристик	
			распада радионуклидов	
364.	ГСССД 364 – 2019	ПРИКАЗ	Соединения на основе Ni ₃ Al. Параметры кристаллической	26
		Росстандарта	решетки в диапазоне концентраций алюминия от 22 ат.%	
		№ 1707	до 26 ат.% Al. Коэффициент линейного теплового	
		от 23.07.2019 г.	расширения Ni ₃ Al в диапазоне температур от 300 K до 500	
		Фонд ГСССД	К	
		№ 942 – 2019 кк.		
365.	ГСССД 365 — 2020	ПРИКАЗ	Стандарты сечений взаимодействия нейтронов с атомными	45
		Росстандарта	ядрами	
		№ 1744		
		от 22.10.2020 г.		
		Фонд ГСССД		
		№ 944 – 2020 кк.		
366.	ГСССД 366 – 2020	ПРИКАЗ	200 - групповые сечения ядерных реакций	59
		Росстандарта		
		№ 527		
		от 17.03.2020 г.		
		Фонд ГСССД		
		№ 945 – 2020 кк.		

No /	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
П/П	2	об издании	4	стр. 5
1	2	3	4	_
367.	ГСССД 367 – 2020	ПРИКАЗ	Фторбензол. Теплофизические свойства (плотность,	60
		Росстандарта	теплоемкость, энтальпия, энтропия, скорость звука,	
		№ 527	коэффициенты теплопроводности и вязкости) в диапазоне	
		от 17.03.2020 г.	температуры от тройной точки не выше 700 К при	
		Фонд ГСССД	давлениях не более 100 МПа	
		№ 946 – 2020 кк.		
368.	ГСССД 368 – 2020	ПРИКАЗ	Хлорбензол. Теплофизические свойства (плотность,	62
		Росстандарта	теплоемкость, энтальпия, энтропия, скорость звука,	
		№ 527	коэффициенты теплопроводности и вязкости) в диапазоне	
		от 17.03.2020 г.	температуры от тройной точки не выше 700 К при	
		Фонд ГСССД	давлениях не более 100 МПа	
		№ 947 – 2020 кк.		
369.	ГСССД 369 – 2020	ПРИКА3	Этилен жидкий и газообразный. Термодинамические	22
		Росстандарта	свойства при температурах от 104 К до 450 К и давлениях	
		№ 527	до 100 МПа	
		от 17.03.2020 г.		
		Фонд ГСССД		
		№ 948 – 2020 кк.		
370.	ГСССД 370 – 2020	ПРИКАЗ	Бензол. Жидкий и газообразный. Термодинамические	46
	, ,	Росстандарта	свойства, коэффициенты динамической вязкости и	
		№ 527	теплопроводности при температурах от 280 К до 725 К и	
		от 17.03.2020 г.	давлениях до 100 МПа	
		Фонд ГСССД		
		№ 949 – 2020 кк.		

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
371.	ГСССД 371 — 2020	ПРИКАЗ Росстандарта № 527 от 17.03.2020 г. Фонд ГСССД № 950 – 2020 кк.	Этанол жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах от 160 К до 650 К и давлениях до 100 МПа	39
372.	ГСССД 372 — 2020	ПРИКАЗ Росстандарта № 527 от 17.03.2020 г. Фонд ГСССД № 951 – 2020 кк.	Армко железо. Никель. Температурный коэффициент линейного расширения и удельное электрическое сопротивление в диапазоне температур от 300 К до 1000 К	30
373.	ГСССД 373 — 2020	ПРИКАЗ Росстандарта № 1426 от 25.08.2020 г. Фонд ГСССД № 952 – 2020 кк.	Плотность и термическое расширение жидких сплавов системы рубидий-висмут в диапазоне температур от линии ликвидуса до 1000 К в интервале концентраций от 20 ат. до 66,7 ат. % Ві	27
374.	ГСССД 374 — 2020	ПРИКАЗ Росстандарта № 527 от 17.03.2020 г. Фонд ГСССД № 953 – 2020 кк.	Плотность и термическое расширение жидких сплавов системы литий—свинец в диапазоне температур от линии ликвидуса до 1050 К и в интервале концентраций от 10 ат. % до 84,3 ат. % Рb	41

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
375.	ГСССД 375 — 2020	ПРИКАЗ Росстандарта № 1426 от 25.08.2020 г. Фонд ГСССД № 954 – 2020 кк.	Пропанол-1. Теплофизические свойства (плотность, теплоемкость, энтальпия, энтропия, скорость звука, коэффициенты теплопроводности и вязкости) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	78
376.	ГСССД 376 — 2020	ПРИКАЗ Росстандарта № 1426 от 25.08.2020 г. Фонд ГСССД № 955 – 2020 кк.	Бутанол-1. Теплофизические свойства (плотность, теплоемкость, энтальпия, энтропия, скорость звука, коэффициенты теплопроводности и вязкости) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	73
377.	ГСССД 377 — 2021	ПРИКАЗ Росстандарта № 371 от 17.03.2021 г. Фонд ГСССД № 956 – 2021 кк.	Радионуклиды ¹⁵² EU, ¹⁵⁴ EU, ¹⁵⁵ EU, ¹⁵³ GD, ^{166m} HO, ¹⁶⁶ HO, ¹⁷⁰ TM, ¹⁶⁹ YB, ¹⁹² IR, ¹⁹⁸ AU, ²⁰³ HG, ²⁰¹ TL, ²⁰⁸ TL, ²¹² PB, ²¹⁴ PB, ²⁰⁷ BI, ²¹² BI, ²¹⁴ BI, ²²⁰ RN, ²²⁴ RA, ²²⁶ RA, ²²⁸ TH, ^{234m} PA, ²⁴¹ AM, ²⁴³ AM. Энергия, абсолютная вероятность эмиссии гамма – и характеристического рентгеновского излучений и период полураспада. Актуализированные данные характеристик распада радионуклидов	29
378.	ГСССД 378 — 2021	ПРИКАЗ Росстандарта № 1106 от 25.06.2021 г. Фонд ГСССД № 957 – 2021 кк	Циклогексан. теплофизические свойства (плотность, теплоемкость, энтальпия, энтропия, скорость звука, коэффициенты теплопроводности и вязкости) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	65

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
379.	ГСССД 379 — 2021	ПРИКАЗ Росстандарта № 1106 от 25.06.2021 г. Фонд ГСССД № 958 – 2021 кк	Метилциклогексан. Теплофизические свойства (плотность, теплоемкость, энтальпия, энтропия, скорость звука, коэффициент теплопроводности) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	65
380.	ГСССД 380 — 2020	ПРИКАЗ Росстандарта № 1426 от 25.08.2020 г. Фонд ГСССД № 959 – 2021 кк	2,3,3, 3-тетрафторпропан. Плотность, энтальпия, изобарная и изохорная теплоемкости, энтропия, и скорость звука в диапазоне температур от 230 К до 420 К и давлений от 0,1 МПа до 20 МПа	40
381.	ГСССД 381 — 2021	ПРИКАЗ Росстандарта № 1106 от 25.06.2021 г. Фонд ГСССД № 960 – 2021 кк	Теллурид лантана (La ₃ Te ₄). Теплопроводность, электропроводность и термоэдс в диапазоне температур от 80 K до 800 K	32
382.	ГСССД 382 — 2020	ПРИКАЗ Росстандарта №1744 от 22.10.2020 г. Фонд ГСССД № 961 – 2021 кк	Сероводород жидкий и газообразный. Плотность, энтальпия, энтропия, изохорная и изобарная теплоемкости при температурах от 190 K до 500 K и давлениях до 100 МПа	35

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во стр.
1	2	3	4	<u>5</u>
383.	ГСССД 383 — 2021	ПРИКАЗ Росстандарта № 371 от 17.03.2021 г. Фонд ГСССД № 962 – 2020 кк	Диэлектрические и пьезоэлектрические свойства мультиферроика феррониобата свинца при температурах от 10 K до 500 K	40
384.	ГСССД 384 — 2021	ПРИКАЗ Росстандарта № 371 от 17.03.2021 г. Фонд ГСССД № 963 – 2020 кк	Диэлектрические и теплофизические свойства высокотемпературных мультиферроиков на основе феррита висмута при температурах от 273 К до 800 К	35
385.	ГСССД 385 — 2021	ПРИКАЗ Росстандарта № 1106 от 25.06.2021 г. Фонд ГСССД № 964 – 2021 кк	Теплопроводность оптических материалов на основе сульфида цинка в диапазоне температур от 4 К до 100 К	24
386.	ГСССД 386 — 2021	ПРИКАЗ Росстандарта № 371 от 17.03.2021 г. Фонд ГСССД № 965 – 2021 кк	Твердые растворы 94% $Ti6$ % Al , 89% $Ti11$ % Al и интерметаллид $Ti_{67}Al_{33}$. Температурный коэффициент линейного расширения и удельное электрическое сопротивление в диапазоне температур от 300 до 1000 K .	50

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п	_	об издании		стр.
1	2	3	4	5
387.	ГСССД 387 – 2021	ПРИКАЗ	Длины волн пиков поглощения оптического излучения в	18
		Росстандарта	газах в спектральном диапазоне от 1260 до 1650 нм	
		№ 1106		
		от 25.06.2021 г.		
		Фонд ГСССД		
		№ 966 – 2021 кк		
388.	ГСССД 388 – 2021	ПРИКАЗ	Горные породы. Теплопроводность в условиях насыщения	45
	, ,	Росстандарта	флюидами (газ, вода, углеводороды) при давлениях до 400	
		№ 2478	МПа в диапазоне температур от 273 К до 523 К	
		от 08.11.2021 г.		
		Фонд ГСССД		
		№ 967 – 2021 кк		
389.	ГСССД 389 – 2021	ПРИКАЗ	Масс-спектры наркотических средств и психотропных	23
	, ,	Росстандарта	веществ. Морфин, кодеин, 6-ацетилморфин, амфетамин,	
		№ 2478	3,4-метилендиоксиамфетамин, кокаин, фентанил	
		от 08.11.2021 г.		
		Фонд ГСССД		
		№ 968 – 2021 кк		
390.	ГСССД 390 – 2021	ПРИКА3	Масс-спектры психоактивных лекарственных веществ.	32
		Росстандарта	Тропикамид, баклофен, габапентин, прегабалин,	
		Nº 2478	карбамазепин, клонидин (клофелин), клозапин, п-	
		от 08.11.2021 г.	дезметилклозапин, доксиламин, галоперидол,	
		Фонд ГСССД	амитриптилин	
		№ 969 – 2021 кк		

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п	_	об издании		стр.
1	2	3	4	5
391.	ГСССД 391 — 2021	ПРИКАЗ Росстандарта № 371 от 17.03.2021 г. Фонд ГСССД № 970 – 2021 кк	Параводород жидкий и газообразный. Плотность, энтальпия, энтропия, изохорная, изобарная теплоемкости и скорость звука при температурах от 14 K до 1000 K и давлениях до 100 МПа	36
392.	ГСССД 392 — 2021	ПРИКАЗ Росстандарта № 371 от 17.03.2021 г. Фонд ГСССД № 971 – 2021 кк	Ортоводород жидкий и газообразный. Плотность, энтальпия, энтропия, изохорная, изобарная теплоемкости и скорость звука при температурах от 15 K до 1000 K и давлениях до 100 МПа	35
393.	ГСССД 393 — 2021	ПРИКАЗ Росстандарта № 371 от 17.03.2021 г. Фонд ГСССД № 972 – 2021 кк	Толуол жидкий и газообразный. Плотность, энтальпия, энтропия, изохорная и изобарная теплоемкости и скорость звука при температурах от 180 K до 700 K и давлениях до 100 МПа	42
394.	ГСССД 394 — 2021	ПРИКАЗ Росстандарта № 371 от 17.03.2021 г. Фонд ГСССД № 973 – 2021 кк	Моноксид углерода жидкий и газообразный. Плотность, энтальпия, энтропия, изохорная и изобарная теплоемкости при температурах от 70 K до 500 K и давлениях до 100 МПа	33

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
395.	ГСССД 395 – 2021	ПРИКАЗ	Ксенон жидкий и газообразный. Плотность, энтальпия,	44
		Росстандарта	энтропия, изохорная, изобарная теплоемкости и скорость	
		№ 371	звука при температурах от 162 К до 750 К и давлениях до	
		от 17.03.2021 г.	100 MΠa	
		Фонд ГСССД		
		№ 974 — 2021 кк		
396.	ГСССД 396-2022	ПРИКАЗ	Аргон. Плотность, энтальпия, изобарная и изохорная	73
		Росстандарта	теплоемкости, энтропия и скорость звука в диапазоне	
		№ 1032	температур от 83,806 К до 1200 К и давлений от 0,1 МПа до	
		от 21.04.2021 г.	1000 МПа, включая критическую область	
		Фонд ГСССД		
		№ 975 — 2022 кк		
397.	ГСССД 397-2022	ПРИКАЗ	Диэлектрические характеристики тонких пленок ниобата	32
		Росстандарта	бария-стронция $Sr_{0.5}Ba_{0.5}Nb_2O_6$ при температурах от 300 К	
		№ 1032	до 700 К	
		от 21.04.2021 г.		
		Фонд ГСССД		
		№ 976 – 2022 кк		
398.	ГСССД 398–2022	ПРИКАЗ	Относительная диэлектрическая проницаемость	29
		Росстандарта	поляризованных образцов, тангенс угла диэлектрических	
		№ 1032	потерь, скорость звука, модуль Юнга и механическая	
		от 21.04.2021 г.	добротность керамических материалов на основе ниобатов	
		Фонд ГСССД	щелочных металлов с высокой стабильностью резонансной	
		№ 977 – 2022 кк	частоты при температурах от 290 К до 450 К	

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во
1	2	3	1	стр. 5
399.	ГСССД 399–2022 взамен ГСССД 317- 2017, ГСССД 198-01, ГСССД 237-2008, ГСССД 314-2015	ПРИКАЗ Росстандарта № 1032 от 21.04.2021 г. Фонд ГСССД № 978 – 2022 кк	Фундаментальные физические константы	22
400.	ГСССД 400-2022	ПРИКАЗ Росстандарта № 1892 от 02.08.2022 г. Фонд ГСССД: № 979 – 2022 кк	Хлор жидкий и газообразный. Плотность при температурах от 172,17 К до 440 К и давлениях до 20 МПа	26
401.	ГСССД 401-2022	ПРИКАЗ Росстандарта № 1892 от 02.08.2022 г. Фонд ГСССД: № 980 – 2022 кк	Тяжелая вода. Термодинамические свойства при температурах от температуры плавления до 825 К и давлениях от соответствующих разреженному газу до 1000 МПа	134
402.	ГСССД 402-2022	ПРИКАЗ Росстандарта № 1892 от 02.08.2022 г. Фонд ГСССД: № 981 – 2022 кк	Н-гексан. Теплофизические свойства (плотность, теплоемкость, энтальпия, энтропия, скорость звука, коэффициенты вязкости и теплопроводности) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	74

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во
1	2	3	4	стр. 5
403.	ГСССД 403-2022	ПРИКАЗ Росстандарта № 1892 от 02.08.2022 г. Фонд ГСССД: № 982 — 2022 кк	Н-пентан. Коэффициенты переноса (коэффициент вязкости, коэффициент теплопроводности) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	58
404.	ГСССД 404-2022	ПРИКАЗ Росстандарта № 1892 от 02.08.2022 г. Фонд ГСССД: № 983 — 2022 кк	РVТ-свойства бинарных систем вода-метан, вода-н.пентан, вода-н.гексан, вода-н.гептан, вода-бензол, вода-толуол и вода-азот в диапазоне температур от 523,2 К до 663,2 К при давлениях до 60 МПа	72
405.	ГСССД 405-2022	ПРИКАЗ Росстандарта № 1892 от 02.08.2022 г. Фонд ГСССД: № 984 – 2022 кк	Теплопроводность системы твердых растворов La_2T_3 - La_3Te_4 в диапазоне температур от 80 K до 400 K	35
406.	ГСССД 406 — 2022	ПРИКАЗ Росстандарта № 2542 от 11.10.2022 г. Фонд ГСССД: № 985-2022 кк	Масс-спектры антидепрессантов - имипрамин, тразодон, венлафаксин	23

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во стр.
1	2	3	4	5
407.	ГСССД 407 — 2022	ПРИКАЗ Росстандарта № 2542 от 11.10.2022 г. Фонд ГСССД: № 986-2022 кк	Масс-спектры нейролептических веществ - хлорпромазин, рисперидон, тиаприд, хлорпротиксен	27
408.	ГСССД 408 — 2022	ПРИКАЗ Росстандарта № 2542 от 11.10.2022 г. Фонд ГСССД: № 987-2022 кк	Н-гептан. Теплофизические свойства (коэффициенты теплопроводности и вязкости) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	54
409.	ГСССД 409 — 2022	ПРИКАЗ Росстандарта № 2542 от 11.10.2022 г. Фонд ГСССД: № 988-2022 кк	Пропилциклогексан. Теплофизические свойства (плотность, теплоемкость, энтальпия, энтропия, скорость звука, коэффициент теплопроводности) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	52
410.	ГСССД 410 — 2022	ПРИКАЗ Росстандарта № 2542 от 11.10.2022 г. Фонд ГСССД: № 989-2022 кк	Значения волновых чисел ИК-спектров хлороформа и глицерина, соответствующие максимальным значениям интенсивности пропускания и нарушенного полного внутреннего отражения в диапазоне от 12500 до 400 см-1	18

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
411.	ГСССД 411 – 2022	ПРИКАЗ Росстандарта № 3213 от 20.12.2022 г. Фонд ГСССД: № 991-2022 кк	Диэтиловый эфир жидкий и газообразный. Плотность при температурах от 270 К до 500 К и давлениях до 40 МПа	45
412.	ГСССД 412 – 2022	ПРИКАЗ Росстандарта № 3213 от 20.12.2022 г. Фонд ГСССД: № 990-2022 кк	Диметиловый эфир жидкий и газообразный. Плотность при температурах от 140 К до 525 К и давлениях до 40 МПа	65
413.	ГСССД 413 – 2023	ПРИКАЗ Росстандарта №671 от 28.03.2023 Фонд ГСССД: № 992-2023 кк	Радионуклиды 206HG, 206, 207, 208, 209, 210TL, 209, 210, 211PB, 210, 211, 213, 215BI, 210, 211, 212, 213, 214, 215, 216, 218PO, 211, 215, 217, 218, 219AT. Энергия, абсолютная вероятность эмиссии частиц, гамма- и характеристического рентгеновского излучений и период полураспада. Актуализированные данные характеристик распада радионуклидов	25
414.	ГСССД 414 – 2023	ПРИКАЗ Росстандарта №671 от 28.03.2023 Фонд ГСССД: № 993-2023 кк	Конструкционные стали (У8, 09Г2С). Скорость звука, относительное температурное расширение, плотность и модуль Юнга в закаленном и отожженном состояниях в диапазоне температур от 20 °C до 700 °C	27

№ п/п	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
11/11	2	об издании З	1	стр. 5
415.	ГСССД 415 — 2023	ПРИКАЗ Росстандарта №671 от 28.03.2023 Фонд ГСССД: № 994-2023 кк	Шестифтористая сера. Плотность, энтальпия, изобарная и изохорная теплоемкости, энтропия и скорость звука в диапазоне температур от 178,98 К до 650 К и давлений от 0,01 МПа до 100 МПа, включая критическую область	74
416.	ГСССД 416 – 2023	ПРИКАЗ Росстандарта №711 от 03.04.2023 Фонд ГСССД: № 995-2023 кк	Масс-спектры антидепрессантов, снотворных и седативных веществ. 1-гидрокси-мидазолам, карисопродол, оксазепам, зопиклон, дифенгидрамин, кломипрамин, бупропион, норкотинин, дезипрамин, доксепин	46
417.	ГСССД 417 – 2023	ПРИКАЗ Росстандарта №711 от 03.04.2023 Фонд ГСССД: № 996-2023 кк	Масс-спектры селективных ингибиторов обратного захвата серотонина. Циталопрам, флуоксетин, N-десметилвенлафаксин	25
418.	ГСССД 418 — 2023	ПРИКАЗ Росстандарта №711 от 03.04.2023 Фонд ГСССД: № 997-2023 кк	Масс-спектры неизбирательных блокаторов м-холинорецепторов. Атропина сульфат (моногидрат), скополамин	22

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
419.	ГСССД 419 – 2023	ПРИКАЗ	Масс-спектры психотропных субстанций. Теофиллин,	22
		Росстандарта	ламотриджин	
		№711 от		
		03.04.2023		
		Фонд ГСССД:		
		№ 998-2023 кк		
420.	ГСССД 420 – 2023	ПРИКА3	Масс-спектры анксиолитиков. Медазепам, тофизопам	22
		Росстандарта		
		№711 от		
		03.04.2023		
		Фонд ГСССД:		
		№ 999-2023 кк		
421.	ГСССД 421 – 2023	ПРИКА3	Масс-спектры нейролептиков (антипсихотики).	22
		Росстандарта	Дроперидол, флуфеназин	
		№711 от	7 · · · · · · · · · · · · · · · · · · ·	
		03.04.2023		
		Фонд ГСССД:		
		№ 1000-2023 кк		
422.	ГСССД 422 – 2023	ПРИКА3	Масс-спектры атипичных антипсихотиков. Тиоридазин,	22
		Росстандарта	оланзапин	
		№711 от		
		03.04.2023		
		Фонд ГСССД:		
		№ 1001-2023 кк		

№ п/п	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
	2	об издании	4	стр. 5
1	<u>=</u>	3	4	
423.	ГСССД 423 — 2023	ПРИКАЗ	Масс-спектры наркотических средств. Носкапин, папаверин	22
		Росстандарта		
		№711 от		
		03.04.2023		
		Фонд ГСССД:		
		№ 1002-2023 кк		
424.	ГСССД 424 – 2023	ПРИКАЗ	Масс-спектры психостимуляторов. Мапротилин,	28
		Росстандарта	миртазапин, протриптилин	
		№711 ot		
		03.04.2023		
		Фонд ГСССД:		
		№ 1003-2023 кк		
425.	ГСССД 425 – 2023	ПРИКАЗ	Масс - спектры лекарственных препаратов, содержащих	25
	, .	Росстандарта	сильнодействующие вещества, требующие контроля.	
		№711 от	Тригексифенидил, ниметазепам, нандролон	
		03.04.2023	тригексифенидил, ниметазепам, нандролон	
		Фонд ГСССД:		
		№ 1004-2023 кк		
426.	ГСССД 426 – 2023	ПРИКА3	Масс-спектры лекарственных препаратов, содержащих	49
	, ,	Росстандарта	биологически-активные вещества, токсиканты. Дигоксин,	
		№711 ot	лидокаин, селегилин, пентоксифиллин, кларитромицин,	
		03.04.2023		
		Фонд ГСССД:	дилтиазем, флуфенамовая кислота, метотрексат,	
		№ 1005-2023 кк	метилпарабен, нифедипин, нимесулид	

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании	_	стр.
1	2	3	4	5
427.	ГСССД 427 — 2023	ПРИКАЗ Росстандарта №711 от 03.04.2023 Фонд ГСССД: № 1006-2023 кк	Масс-спектры прекурсоров и сильнодействующих препаратов. Антраниловая кислота, вальпроевая кислота, эналаприл, циннаризин, пиперидин, налтрексон	34
428.	ГСССД 428 – 2023	ПРИКАЗ Росстандарта №711 от 03.04.2023 Фонд ГСССД: № 1007-2023 кк	Масс-спектры лекарственных препаратов. Диклофенак, кеторолак, кетопрофен, метоклопрамид	28
429.	ГСССД 429 — 2023	ПРИКАЗ Росстандарта №711 от 03.04.2023 Фонд ГСССД: № 1008-2023 кк	Масс-спектры нейрометаболических стимуляторов. Пирацетам, фенибут	22
430.	ГСССД 430 — 2023	ПРИКАЗ Росстандарта №1210 от 09.06.2023 Фонд ГСССД: № 1009-2023 кк	Нормальный пентадекан. Теплофизические свойства (плотность, теплоемкость, энтальпия, энтропия, скорость звука, коэффициенты вязкости и теплопроводности) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	63

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
431.	ГСССД 431 — 2023	ПРИКАЗ Росстандарта №1210 от 09.06.2023 Фонд ГСССД: № 1010-2023 кк	Нормальный тетрадекан. Теплофизические свойства (плотность, теплоемкость, энтальпия, энтропия, скорость звука, коэффициенты вязкости и теплопроводности) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	70
432.	ГСССД 432 — 2023	ПРИКАЗ Росстандарта №1210 от 09.06.2023 Фонд ГСССД: № 1011-2023 кк	Этилциклогексан. Термодинамические свойства (плотность, теплоемкость, энтальпия, энтропия, скорость звука) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	52
433.	ГСССД 433-2023	ПРИКАЗ Росстандарта №1210 от 09.06.2023 Фонд ГСССД: № 1012-2023 кк	Электросопротивление и тепловое расширение интерметаллида 75 Ti 25 Al, подвергнутого различным термическим обработкам в диапазоне температур от 300 К до 1000 К	28
434.	ГСССД 434-2023	ПРИКАЗ Росстандарта №1210 от 09.06.2023 Фонд ГСССД: № 1013-2023 кк	Теплопроводность твердых растворов $Pr_2Te_3-Pr_3Te_4$ в диапазоне температур от $80~\rm K$ до $400~\rm K$	33

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во стр.
1	2	3	4	<u>5</u>
435.	ГСССД 435-2023	ПРИКАЗ Росстандарта №1210 от 09.06.2023 Фонд ГСССД: № 1014-2023 кк	Электропроводность висмут-свинцовой эвтектики в области температуры плавления от 270 К до 600 К	28
436.	ГСССД 436-2023	ПРИКАЗ Росстандарта №1210 от 09.06.2023 Фонд ГСССД: № 1015-2023 кк	Диэлектрические и сегнетоэлектрические характеристики тонких пленок мультиферроика BiFeO3, полученных методом ВЧ-катодного распыления	34
437.	ГСССД 437-2023	ПРИКАЗ Росстандарта №1523 от 28.07.2023 Фонд ГСССД: № 1016-2023 кк	Диэлектрические и сегнетоэлектрические характеристики тонких пленок $Ba_2NdFeNb_4O_{15}$ в диапазоне температур от 80 К до 470 К	28
438.	ГСССД 438-2023	ПРИКАЗ Росстандарта №1523 от 28.07.2023 Фонд ГСССД: № 1017-2023 кк	Диэлектрические характеристики тонких пленок SBN-50 на подложках Si (001) в диапазоне температур от 300 К до 600 К	30

No	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
439.	ГСССД 439-2023	ПРИКАЗ Росстандарта №2399 от 20.11.2023 Фонд ГСССД: № 1018-2023 кк	Хроматографические объёмы удерживания и сопряженных с ними данных УФ-спектров биологически активных веществ, фармацевтических субстанций, наркотиков, экотоксикантов, красителей, консервантов	31
440.	ГСССД 440-2023	ПРИКАЗ Росстандарта №2399 от 20.11.2023 Фонд ГСССД: № 1019-2023 кк	Масс-спектры психотропных веществ. Феназепам, гидроксифеназепам, трамадол N-оксид, мидазолам, трамадол, нитразепам, хлордиазепоксид, диазепам, декстрометорфан, дифениламин, фентанил	50
441.	ГСССД 441-2023	ПРИКАЗ Росстандарта №2399 от 20.11.2023 Фонд ГСССД: № 1020-2023 кк	Теплопроводность водных растворов $H_2O-MgCl_2$ в диапазонах температур от 290 К до 470 К и давлениях от 0,1 до 100 МПа	40
442.	ГСССД 442-2024	ПРИКАЗ Росстандарта № 686 от 13.03.2024 Фонд ГСССД: № 1021-2024 кк	Радионуклиды ^{85m} Kr, ⁸⁵ Kr, ⁸⁷ Kr, ⁸⁸ Kr, ⁸⁹ Sr, ⁹⁰ Sr, ⁹¹ Y, ⁹⁵ Zr, ^{95m} Nb, ⁹⁵ Nb, ⁹⁹ Mo, ¹⁰³ Ru, ¹⁰⁵ Rh, ¹⁰⁶ Ru, ¹⁰⁶ Rh, ¹¹¹ Ag, ^{115m} Cd, ¹¹⁵ Cd, ¹²⁵ Sb, ¹³¹ I, ^{131m} Xe, ¹³² Te, ^{133m} Xe, ¹³³ Xe, ¹³⁴ Cs. Ядернофизические характеристики. Осколки деления, обладающие большими выходами, и определяющие остаточное энерговыделение и радиотоксичность отработавшего топлива в реакторе после его остановки	27

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во стр.
1	2	3	4	5
443.	ГСССД 443-2024	ПРИКАЗ Росстандарта № 686 от 13.03.2024 Фонд ГСССД: № 1022-2024 кк	Сульфиды гадолиния ($GdS_{1,480}$, $GdS_{1,483}$). Теплопроводность, электропроводность и термоэдс в интервале от $80~\rm K$ до $450~\rm K$	43
444.	ГСССД 444-2024	ПРИКАЗ Росстандарта № 686 от 13.03.2024 Фонд ГСССД: № 1023-2024 кк	Хладагент транс-1,3,3,3-тетрафторпропен (R1234ze(E). Плотность, энтальпия, изобарная и изохорная теплоемкости, энтропия и скорость звука в диапазоне температур от 169 К до 420 К и давлений от 0,1 МПа до 100 МПа	57
445.	ГСССД 445-2024	ПРИКАЗ Росстандарта № 686 от 13.03.2024 Фонд ГСССД: № 1024-2024 кк	Транс-1-хлор-3,3,3-трифтор-1-пропен (R1233zd(E). Плотность, энтальпия, изобарная и изохорная теплоемкости, энтропия и скорость звука в диапазоне температур от 195,15 К до 450 К и давлений от 0,1 МПа до 100 МПа	55
446.	ГСССД 446-2024	ПРИКАЗ Росстандарта № 1365 от 05.06.2024 Фонд ГСССД: № 1025-2024 кк	Конструкционные стали (30ХГСА, сталь 45). Скорость звука, относительное температурное расширение, плотность и модуль Юнга в закаленном и отожженном состояниях в диапазоне температур от 20 °C до 700 °C	36

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во стр.
1	2	3	4	5
447.	ГСССД 447-2024	ПРИКАЗ Росстандарта № 1365 от 05.06.2024 Фонд ГСССД: № 1026-2024 кк	Сплавы никель - ванадий. Коэффициенты температуропроводности в интервале температур от 650 К до температуры плавления и коэффициенты удельного электрического сопротивления в интервале температур от 300 К до температуры плавления	20
448.	ГСССД 448-2024	ПРИКАЗ Росстандарта № 1365 от 05.06.2024 Фонд ГСССД: № 1027-2024 кк	Нормальный гексадекан. Теплофизические свойства (плотность, теплоемкость, энтальпия, энтропия, скорость звука, коэффициенты вязкости и теплопроводности) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	66
449.	ГСССД 449-2024	ПРИКАЗ Росстандарта № 1365 от 05.06.2024 Фонд ГСССД: № 1028-2024 кк	Нормальный гептадекан. Теплофизические свойства (плотность, теплоемкость, энтальпия, энтропия, скорость звука, коэффициенты вязкости и теплопроводности) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	60
450.	ГСССД 450-2024	ПРИКАЗ Росстандарта № 1365 от 05.06.2024 Фонд ГСССД: № 1029-2024 кк	Нормальный октадекан. Теплофизические свойства (плотность, теплоемкость, энтальпия, энтропия, скорость звука, коэффициенты вязкости и теплопроводности) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	64

№ п/п	Номер таблиц ССД	Сведения об издании	Наименование таблиц ССД	Кол-во
1	2	3	4	стр. 5
451.	ГСССД 451-2024	ПРИКАЗ Росстандарта № 1365 от 05.06.2024 Фонд ГСССД: № 1030-2024 кк	Бромбензол. Термодинамические свойства (плотность, теплоемкость, энтальпия, энтропия, скорость звука) в диапазоне температуры от тройной точки до 700 К при давлениях до 100 МПа	52
452.	ГСССД 452-2024	ПРИКАЗ Росстандарта № 1444 от 17.06.2024 Фонд ГСССД: № 1031-2024 кк	Коэффициенты молярной экстинкции белков, антител, нуклеотидов, олигонуклеотидов, нуклеиновых кислот, ДНК, РНК, пигментов (хлорофилла)	22
453.	ГСССД 453-2024	ПРИКАЗ Росстандарта № 1444 от 17.06.2024 Фонд ГСССД: № 1032-2024 кк	Последовательности нуклеотидов нуклеиновых кислот. Дезоксирибонуклеиновая кислота (ДНК) — ядерная, митохондриальная; рибонуклеиновая кислота (РНК), в том числе патогенных биологических агентов (ПБА)	20
454.	ГСССД 454-2024	ПРИКАЗ Росстандарта № 2148 от 06.09.2024 Фонд ГСССД: № 1033-2024 кк	Вольфрам. Температурный коэффициент линейного расширения в диапазоне температуры от 150 К до 2700 К и удельная теплоемкость в диапазоне от 260 К до 870 К	37

№	Номер таблиц ССД	Сведения	Наименование таблиц ССД	Кол-во
п/п		об издании		стр.
1	2	3	4	5
455.	ГСССД 455-2024	ПРИКАЗ	Значения волновых чисел ИК-спектров полистирола,	20
		Росстандарта № 2148 от 06.09.2024 Фонд ГСССД: № 1034-2024 кк	аммиака, паров воды в воздухе, диоксида углерода, аденозинтрифосфата натрия, хинина соответствующие максимальным значениям интенсивности пропускания	
456.	ГСССД 456-2024	ПРИКАЗ Росстандарта № 2148 от 06.09.2024 Фонд ГСССД: № 1035-2024 кк	Плотность свинцово-висмутового эвтектического сплава в жидком состоянии как функция удельной энтальпии и давления для широкого диапазона значений энтальпии (от 0,1 до 1,5 кДж/г) и давления (от 3,0 до 50 кбар)	30